首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theiler's murine encephalomyelitis virus (TMEV) results in a persistent central nervous system infection (CNS) and immune-mediated demyelination in mice. TMEV largely persists in macrophages (Ms) in the CNS, and infected Ms in vitro undergo apoptosis, whereas the infection of other rodent cells produces necrosis. We have found that necrosis is the dominant form of cell death in BeAn virus-infected BHK-21 cells but that ~20% of cells undergo apoptosis. Mcl-1 was highly expressed in BHK-21 cells, and protein levels decreased upon infection, consistent with onset of apoptosis. In infected BHK-21 cells in which Mcl-1 expression was knocked down using silencing RNAs there was a 3-fold increase in apoptotic cell death compared to parental cells. The apoptotic program switched on by BeAn virus is similar to that in mouse Ms, with hallmarks of activation of the intrinsic apoptotic pathway in a tumor suppressor protein p53-dependent manner. Infection of stable Mcl-1-knockdown cells led to restricted virus titers and increased physical to infectious particle (PFU) ratios, with additional data suggesting that a late step in the viral life cycle after viral RNA replication, protein synthesis, and polyprotein processing is affected by apoptosis. Together, these results indicate that Mcl-1 acts as a critical prosurvival factor that protects against apoptosis and allows high yields of infectious virus in BHK-21 cells.  相似文献   

2.
Theiler's murine encephalomyelitis virus (TMEV) produces a persistent central nervous system infection and chronic, inflammatory demyelinating disease in susceptible mice. TMEV antigen(s) and RNA genome have been detected in astrocytes, oligodendrocytes, and macrophages during persistence. Whether there is a predominant cell type in which TMEV persists has not been resolved. Since TMEV-induced demyelinating lesions are infiltrated with macrophages and a number of other persistent viruses show near-exclusive tropism for these phagocytic cells, we used two-color immunofluorescent staining with conventional and confocal microscopy to colocalize TMEV to cells that stain with monoclonal antibodies (MOMA-2) [unknown antigen], Mac-1 [CD11b], FA-11 [CD66], and 2F8 [scavenger receptor]) to macrophages in BeAn-infected SJL mice. A predominant virus antigen burden within macrophages infiltrating demyelinating lesions was seen. A dichotomy of cells staining for virus antigen(s) was found with infected cells containing either a large or small virus antigen load. Ninety percent of cells with a large virus antigen load were large phagocytes (20 to 50 microns) that were readily detected at low power (5x objective). Cells with smaller amounts of virus antigen(s) turned out to be either these same large phagocytic cells or much smaller cells, approximately equal to 10 microns in diameter. Forty percent of cells with a small virus antigen load were macrophages. The unidentified approximately equal to 10-microns cells that are virus antigen positive and macrophage negative in this study could still be macrophages, or they may be oligodendrocytes. The fact that virus was detected in the cytoplasm and not phagolysosomes of macrophages and the sheer mass of fluorescently stained virus proteins in some macrophages suggest that TMEV persists in these phagocytic cells by active virus replication.  相似文献   

3.
Theiler''s murine encephalomyelitis virus (TMEV) induces two distinct cell death programs, necrosis and apoptosis. The apoptotic pathway is of particular interest because TMEV persists in the central nervous system of mice, largely in infiltrating macrophages, which undergo apoptosis. Infection of murine macrophages in culture induces apoptosis that is Bax dependent through the intrinsic or mitochondrial pathway, restricting infectious-virus yields and raising the possibility that apoptosis represents a mechanism to attenuate TMEV yet promote macrophage-to-macrophage spread during persistent infection. To help define the cellular stressors and upstream signaling events leading to apoptosis during TMEV infection, we screened baby hamster kidney (BHK-21) cells transfected to express individual nonstructural genes (except 3B) of the low-neurovirulence BeAn virus strain for cell death. Only expression of the leader protein led to apoptosis, as assessed by fluorescence-activated cell sorting analysis of propidium iodide- and annexin V-stained transfected cells, immunoblot analysis of poly(ADP-ribose) polymerase and caspase cleavages, electron microscopy, and inhibition of apoptosis by the pancaspase inhibitor qVD-OPh. After transfection, Bak and not Bax expression increased, suggesting that the apical pathway leading to activation of these Bcl-2 multi-BH-domain proapoptotic proteins differs in BeAn virus infection versus L transfection. Mutation to remove the CHCC Zn finger motif from L, a motif required by L to mediate inhibition of nucleocytoplasmic trafficking, significantly reduced L-protein-induced apoptosis in both BHK-21 and M1-D macrophages.Theiler''s murine encephalomyelitis viruses (TMEV), members of the genus Cardiovirus in the family Picornaviridae, are highly cytolytic RNA viruses. Mice experimentally infected with a low-neurovirulence TMEV, such as BeAn virus, develop persistent infection in the central nervous system (CNS) and an inflammatory demyelinating disease, providing an experimental analogue for multiple sclerosis. BeAn virus persists primarily in macrophages in the CNS of infected mice. Schlitt et al. (34) found that 74% of TUNEL-positive cells in infected spinal cords (primarily in CNS lesions) were T and B lymphocytes and 8% were macrophages, although virus genomes were detected in <1% of apoptotic cells, consistent with infection of only a low percentage of macrophages and the fact that TMEV does not infect T or B lymphocytes in culture. Thus, some means other than direct infection was responsible for apoptosis of most CNS macrophages, including TMEV triggering apoptosis through tumor necrosis factor alpha or tumor necrosis factor alpha-related apoptosis-inducing ligand by binding death receptors on activated macrophages in vitro, as reported elsewhere (17).Infection of mouse macrophages induces apoptosis (16, 26) mediated by Bax through the intrinsic or mitochondrial pathway and severely restricts the yield of progeny virus (37). Thus, apoptosis may be a mechanism to attenuate the virus yet promote macrophage-to-macrophage spread through phagocytosis of infected apoptotic blebs during persistence (37). In contrast, TMEV infection in other rodent cells tested thus far, including baby hamster kidney (BHK-21) cells, produces necrotic cell death with high virus yields. The contrasting outcomes of TMEV infection point to the existence of two distinct virus-induced cell death programs.The genes of an increasing number of RNA viruses have been shown to encode proteins that trigger apoptosis. Among picornaviruses, coxsackievirus B3 1B (VP2) (12, 13), avian encephalomyocarditis virus 1C (VP3) (24) and 2C (25), enterovirus 71 2A (20), and poliovirus 2A (10) and 3C protease (3Cpro) (3) induce apoptosis, mostly through the intrinsic pathway. Coxsackievirus B3 VP2 has been shown to interact with the proapoptotic Siva protein in a yeast two-hybrid screen (12), but exactly how the VP2-Siva interaction or any of the other picornavirus proteins initiates the apoptotic cascade remains unknown.To gain insight into the upstream signaling events that lead to apoptosis, we tested the ability of individual BeAn virus nonstructural genes to induce apoptosis in uninfected BHK-21 cells. Only the leader (L) protein resulted in apoptosis and mutation of the CHCC Zn finger motif in L significantly reduced L protein-induced apoptosis.  相似文献   

4.
TC Moore  KL Bush  L Cody  DM Brown  TM Petro 《Journal of virology》2012,86(19):10841-10851
During Theiler's murine encephalomyelitis virus (TMEV) infection of macrophages, it is thought that high interleukin-6 (IL-6) levels contribute to the demyelinating disease found in chronically infected SJL/J mice but absent in B10.S mice capable of clearing the infection. Therefore, IL-6 expression was measured in TMEV-susceptible SJL/J and TMEV-resistant B10.S macrophages during their infection with TMEV DA strain or responses to lipopolysaccharide (LPS) or poly(I · C). Unexpectedly, IL-6 production was greater in B10.S macrophages than SJL/J macrophages during the first 24 h after stimulation with TMEV, LPS, or poly(I · C). Further experiments showed that in B10.S, SJL/J, and RAW264.7 macrophage cells, IL-6 expression was dependent on extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and enhanced by exogenous IL-12. In SJL/J and RAW264.7 macrophages, exogenous IL-6 resulted in decreased TMEV replication, earlier activation of STAT1 and STAT3, production of nitric oxide, and earlier upregulation of several antiviral genes downstream of STAT1. However, neither inhibition of IL-6-induced nitric oxide nor knockdown of STAT1 diminished the early antiviral effect of exogenous IL-6. In addition, neutralization of endogenous IL-6 from SJL/J macrophages with Fab antibodies did not exacerbate early TMEV infection. Therefore, endogenous IL-6 expression after TMEV infection is dependent on ERK MAPK, enhanced by IL-12, but too slow to decrease viral replication during early infection. In contrast, exogenous IL-6 enhances macrophage control of TMEV infection through preemptive antiviral nitric oxide production and antiviral STAT1 activation. These results indicate that immediate-early production of IL-6 could protect macrophages from TMEV infection.  相似文献   

5.
Cells that can participate in an innate immune response within the central nervous system (CNS) include infiltrating cells (polymorphonuclear leukocytes [PMNs], macrophages, and natural killer [NK] cells) and resident cells (microglia and sometimes astrocytes). The proinflammatory cytokine interleukin-6 (IL-6) is produced by all of these cells and has been implicated in the development of behavioral seizures in the Theiler's murine encephalomyelitis virus (TMEV)-induced seizure model. The assessment, via PCR arrays, of the mRNA expression levels of a large number of chemokines (ligands and receptors) in TMEV-infected and mock-infected C57BL/6 mice both with and without seizures did not clearly demonstrate the involvement of PMNs, monocytes/macrophages, or NK cells in the development of seizures, possibly due to overlapping function of the chemokines. Additionally, C57BL/6 mice unable to recruit or depleted of infiltrating PMNs and NK cells had seizure rates comparable to those of controls following TMEV infection, and therefore PMNs and NK cells do not significantly contribute to seizure development. In contrast, C57BL/6 mice treated with minocycline, which affects monocytes/macrophages, microglial cells, and PMNs, had significantly fewer seizures than controls following TMEV infection, indicating monocytes/macrophages and resident microglial cells are important in seizure development. Irradiated bone marrow chimeric mice that were either IL-6-deficient mice reconstituted with wild-type bone marrow cells or wild-type mice reconstituted with IL-6-deficient bone marrow cells developed significantly fewer behavioral seizures following TMEV infection. Therefore, both resident CNS cells and infiltrating cells are necessary for seizure development.  相似文献   

6.
Theiler's murine encephalomyelitis virus (TMEV), a member of the Cardiovirus genus in the family Picornaviridae, is a highly cytolytic virus that produces necrotic death in rodent cells except for macrophages, which undergo apoptosis. In the present study we have analyzed the kinetics of BeAn virus infection in M1-D cells, in order to temporally relate virus replication to the apoptotic signaling events. Apoptosis was associated with early exponential virus growth from 1 to 12 h postinfection (p.i.); however, >/=80% of peak infectivity was lost by 16 to 24 h p.i. The pan-caspase inhibitor qVD-OPh led to significantly higher virus yields, while zVAD-fmk completely inhibited virus replication until 10 h p.i., precluding its assessment in apoptosis. In contrast, while zVAD-fmk significantly inhibited BeAn virus replication in BHK-21 cells at 12 and 16 h p.i., virus replication at these time points was not altered by qVD-OPh. Bax translocation into mitochondria, efflux of cytochrome c into the cytoplasm, and activation of caspases 9 and 3 between approximately 8 and 12 h p.i. (all hallmarks of the intrinsic apoptotic pathway) were transiently inhibited by expression of Bcl-2, which is not expressed in M1-D cells. Thus, BeAn virus infection in M1-D macrophages, which restricts virus replication, provides a potential mechanism for modulating TMEV neurovirulence during persistence in the mouse central nervous system.  相似文献   

7.
The low-neurovirulence Theiler's murine encephalomyelitis viruses (TMEV), such as BeAn virus, cause a persistent infection of the central nervous system (CNS) in susceptible mouse strains that results in inflammatory demyelination. The ability of TMEV to persist in the mouse CNS has traditionally been demonstrated by recovering infectious virus from the spinal cord. Results of infectivity assays led to the notion that TMEV persists at low levels. In the present study, we analyzed the copy number of TMEV genomes, plus- to minus-strand ratios, and full-length species in the spinal cords of infected mice and infected tissue culture cells by using Northern hybridization. Considering the low levels of infectious virus in the spinal cord, a surprisingly large number of viral genomes (mean of 3.0 x 10(9)) was detected in persistently infected mice. In the transition from the acute (approximately postinfection [p.i.] day 7) to the persistent (beginning on p.i. day 28) phase of infection, viral RNA copy numbers steadily increased, indicating that TMEV persistence involves active viral RNA replication. Further, BeAn viral genomes were full-length in size; i.e., no subgenomic species were detected and the ratio of BeAn virus plus- to minus-strand RNA indicated that viral RNA replication is unperturbed in the mouse spinal cord. Analysis of cultured macrophages and oligodendrocytes suggests that either of these cell types can potentially synthesize high numbers of viral RNA copies if infected in the spinal cord and therefore account for the heavy viral load. A scheme is presented for the direct isolation of both cell types directly from infected spinal cords for further viral analyses.  相似文献   

8.
Differences in components of innate anti-viral immune responses may account for the contrast in susceptibility to Theiler's murine encephalomyelitis virus (TMEV) between SJL/J and B10.S mice. Herein, the expression of IL-12, interferon (IFN)-beta, Toll-like receptors 3 (TLR3), TLR7, and mitogen-activated protein (MAP)-kinases was evaluated in SJL/J and B10.S macrophages infected with TMEV. Twenty-four hours after infection, SJL/J macrophages exhibited higher levels of TMEV RNA, IL-12 p40, and TLR3 but lower levels of IL-12 p70 and the IL-12 p35 subunit compared with B10.S macrophages. Addition of exogenous IL-12 p70 or IFN-beta increased the resistance of SJL/J macrophages to TMEV infection. To assess MAP-kinases, macrophages were pretreated with the p38 MAP-kinase inhibitor SB203580 or extracellular signal-regulated kinases (ERK) MAP-kinase inhibitor U0126 before TMEV infection. U0126 reduced SJL/J but increased B10.S macrophage expression of IL-12 p40 and p70 in response to TMEV. U0126 decreased the IL-12 p35 response of SJL/J macrophages. To assess TLR7, SJL/J and B10.S macrophages were stimulated with loxoribine, a TLR7 ligand. Loxoribine induced more IL-12 p70 production and p35 expression in B10.S than SJL/J macrophages. U0126 increased loxoribine-induced expression of IL-12 p40 and IL-12 p70 in B10.S but not SJL/J macrophages. Thus, differences in production of IL-12 p70 due to expression of the p35 subunit and in activity of TLR7, as well as activation of factors downstream of ERK MAP-kinases likely underlie the disparity in innate immunity between SJL/J and B10.S macrophages to TMEV.  相似文献   

9.
The intracellular development and RNA composition of Theiler's murine encephalomyelitis virus (TMEV) isolates were determined by electron microscopy, sucrose gradient centrifugation, and RNase T1 fingerprinting. Replication of FA virus, a virulent strain of TMEV, was characterized by the appearance of viral crystalline arrays in the cytoplasm of infected cells. In contrast, cells infected with the less virulent isolates (WW, TO4, BeAn 8386, and Yale) showed no crystalline arrays; instead, virions were found to be arranged between two layers of membranes in the cytoplasm of infected cells. Analysis of the RNAs of TMEV isolates showed that the RNAs were single-stranded molecules having sedimentation coefficients of 35S. RNase T1 fingerprinting of TMEV RNA revealed that striking differences between the virulent and less virulent TMEV isolates existed. Moreover, base composition analysis of RNase T1-resistant oligonucleotides of two TMEV isolates which represented the two subgroups indicated that there were no substantial oligonucleotides common to both subgroups. Based on these findings and the known difference in virulence, we suggest that the TMEV group contains two genetically district subgroups of viruses.  相似文献   

10.
Microglia are resident central nervous system (CNS) macrophages. Theiler's murine encephalomyelitis virus (TMEV) infection of SJL/J mice causes persistent infection of CNS microglia, leading to the development of a chronic-progressive CD4(+) T-cell-mediated autoimmune demyelinating disease. We asked if TMEV infection of microglia activates their innate immune functions and/or activates their ability to serve as antigen-presenting cells for activation of T-cell responses to virus and endogenous myelin epitopes. The results indicate that microglia lines can be persistently infected with TMEV and that infection significantly upregulates the expression of cytokines involved in innate immunity (tumor necrosis factor alpha, interleukin-6 [IL-6], IL-18, and, most importantly, type I interferons) along with upregulation of major histocompatibility complex class II, IL-12, and various costimulatory molecules (B7-1, B7-2, CD40, and ICAM-1). Most significantly, TMEV-infected microglia were able to efficiently process and present both endogenous virus epitopes and exogenous myelin epitopes to inflammatory CD4(+) Th1 cells. Thus, TMEV infection of microglia activates these cells to initiate an innate immune response which may lead to the activation of naive and memory virus- and myelin-specific adaptive immune responses within the CNS.  相似文献   

11.
The benefits of programmed cell death by apoptosis are the safe and efficient clearance of damaged, infected, or surplus cells, primarily mediated by tissue-resident macrophages or tissue-infiltrating blood monocytes that differentiate into macrophages. Microglial cells are macrophages of the brain parenchyma, important immune surveillance cells that respond to various injuries and diseases of the brain. It is often stated that how a macrophage interacts with an apoptotic cell defines subsequent inflammatory responses, i.e., will engulfment be beneficial or detrimental for tissue repair, regeneration, and immunity. Our focus has been to better understand how macrophages discriminate between living and dying cells. Following our initial findings with platelet endothelial cell adhesion molecule (PECAM)-1, our studies have revealed a key role for potassium ion permeability in regulating integrin-dependent binding of apoptotic cells by macrophages and their subsequent response to proinflammatory stimuli. Specifically, apoptotic cells represent a depolarizing stimulus for macrophages where PECAM-1-mediated cell–cell interactions delay subsequent membrane repolarization. It is salient that potassium leak represents an early feature of cells destined to die by apoptosis that could trigger depolarization of macrophages that lie in close apposition. We speculate that how a tissue-resident macrophage responds to strong depolarizing stimuli has wider implications for inflammation and autoimmunity.  相似文献   

12.
Cellular apoptosis induced by viral genes can play a critical role in determining virulence as well as viral persistence. This form of cell death has been of interest with respect to Theiler's murine encephalomyelitis virus (TMEV) because the GDVII strain and members of the GDVII subgroup are highly neurovirulent, while the DA strain and members of the TO subgroup induce a chronic progressive inflammatory demyelination with persistence of the virus in the central nervous system. The TMEV L protein has been identified as important in the pathogenesis of Theiler's virus-induced demyelinating disease (TMEV-IDD). We now show that DA L is apoptotic following transfection of L expression constructs or following DA virus infection of HeLa cells; the apoptotic activity depends on the presence of the serine/threonine domain of L, especially a serine at amino acid 57. In contrast, GDVII L has little apoptotic activity following transfection of L expression constructs in HeLa cells and is antiapoptotic following GDVII infection of HeLa cells. Of note, both DA and GDVII L cleave caspase-3 in BHK-21 cells, although neither implements the full apoptotic machinery in this cell type as manifested by the induction of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The differences in apoptotic activities of DA and GDVII L in varied cell types may play an important role in TMEV subgroup-specific disease phenotypes.  相似文献   

13.
Viruses have evolved strategies to protect infected cells from apoptotic clearance. We present evidence that HIV-1 possesses a mechanism to protect infected macrophages from the apoptotic effects of the death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). In HIV-1-infected macrophages, the viral envelope protein induced macrophage colony-stimulating factor (M-CSF). This pro-survival cytokine downregulated the TRAIL receptor TRAIL-R1/DR4 and upregulated the anti-apoptotic genes Bfl-1 and Mcl-1. Inhibition of M-CSF activity or silencing of Bfl-1 and Mcl-1 rendered infected macrophages highly susceptible to TRAIL. The anti-cancer agent Imatinib inhibited M-CSF receptor activation and restored the apoptotic sensitivity of HIV-1-infected macrophages, suggesting a novel strategy to curtail viral persistence in the macrophage reservoir.  相似文献   

14.
Getti GT  Cheke RA  Humber DP 《Parasitology》2008,135(12):1391-1399
Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP-1 and U937) and the results confirmed in peripheral blood mononuclear cells (PBMC). All 3 species induced early apoptosis 48 h after infection (expression of phosphatidyl serine on the outer membrane). There were significant increases in the percentage of apoptotic cells both for U937 and PBMC following infection with each of the 3 species. Early apoptotic events were confirmed by mitochondrial membrane permeabilization detection and caspase activation 48 and 72 h after infection. Moreover, the percentage of infected THP-1 and U937 macrophages increased significantly (up to 100%) following treatment with an apoptosis inducer. Since phosphatidyl serine externalization on apoptosing cells acts as a signal for engulfment by macrophages, induction of apoptosis in the parasitized cells could actively participate in spreading the infection. In summary, parasite-containing apoptotic bodies with intact membranes could be released and phagocytosed by uninfected macrophages.  相似文献   

15.
Theiler's murine encephalomyelitis virus (TMEV) causes a demyelinating disease in infected mice which has similarities to multiple sclerosis. Spleen cells from TMEV-infected SJL/J mice stimulated with antigen-presenting cells infected with TMEV resulted in a population of autoreactive CD8+ cytotoxic T cells that kill uninfected syngeneic cells. We established CD8+ T cell clones that could kill both TMEV-infected and uninfected syngeneic targets, although infected target cells were killed more efficiently. The CD8+ T-cell clones produced gamma interferon when incubated with either infected or uninfected syngeneic target cells. Intracerebral injection of the clones into na?ve mice induced degeneration, not only in the brain, but also in the spinal cord. This suggests that CD8+ Tc1 cells could play a pathogenic role in central nervous system inflammation.  相似文献   

16.
Macrophages in the lung are the primary cells being infected by Mycobacterium tuberculosis (Mtb) during the initial manifestation of tuberculosis. Since the adaptive immune response to Mtb is delayed, innate immune cells such as macrophages and neutrophils mount the early immune protection against this intracellular pathogen. Neutrophils are short-lived cells and removal of apoptotic cells by resident macrophages is a key event in the resolution of inflammation and tissue repair. Since anti-inflammatory activity is not compatible with effective immunity to intracellular pathogens, we therefore investigated how uptake of apoptotic neutrophils modulates the function of Mtb-activated human macrophages. We show that Mtb infection exerts a potent proinflammatory activation of human macrophages with enhanced gene activation and release of proinflammatory cytokines and that this response was augmented by apoptotic neutrophils. The enhanced macrophage response is linked to apoptotic neutrophil-driven activation of the NLRP3 inflammasome and subsequent IL-1β signalling. We also demonstrate that apoptotic neutrophils not only modulate the inflammatory response, but also enhance the capacity of infected macrophages to control intracellular growth of virulent Mtb. Taken together, these results suggest a novel role for apoptotic neutrophils in the modulation of the macrophage-dependent inflammatory response contributing to the early control of Mtb infection.  相似文献   

17.
18.
Influenza virus-infected cells undergo apoptosis and become susceptible to phagocytosis by macrophages in vitro, and this leads to the propagation of the virus being inhibited. We previously showed that inhibitors of phagocytosis increased the rate of mortality among influenza virus-infected mice. However, the mode of the phagocytosis of influenza virus-infected cells in vivo has not been investigated. We, in this study, assessed this issue by histochemically analyzing bronchoalveolar lavage cells and lung tissue obtained from C57BL/6 mice infected with influenza A/WSN (H1N1) virus. Both neutrophils and macrophages accumulated in the lung soon after the viral challenge, and either type of cell was capable of phagocytosing influenza virus-infected, apoptotic cells. Changes in the level of phagocytosis and the amount of virus in lung tissue roughly correlated with each other. Furthermore, alveolar macrophages prepared from influenza virus-infected mice showed greater phagocytic activity than those from uninfected mice. The phagocytic activity of macrophages was stimulated in vitro by a heat-labile substance(s) released from influenza virus-infected cells undergoing apoptosis. These results suggested that the level of phagocytosis is augmented both quantitatively and qualitatively in the lung of influenza virus-infected animals so that infected cells are effectively eliminated. Finally, lack of TLR4 caused an increase in the rate of mortality among influenza virus-challenged mice and a decrease in the level of phagocytosis of apoptotic cells in the lung. TLR4 could thus play an important role in the host defense against influenza by positively regulating the phagocytic elimination of infected cells.  相似文献   

19.
Theiler's murine encephalomyelitis virus is divided into two subgroups, TO and GDVII, inducing subgroup‐specific diseases. In order to investigate the role(s) of nonstructural proteins of TMEV, L and L*, leaders of two subgroups, were separately expressed with or without L* in BHK‐21 cells. Expression of L increased the number of apoptotic cells. L*/BHK‐21 cells constitutively expressing L* showed the decrease in cell death induced by L. These results suggest that L and L* regulate apoptosis during viral infection and contribute to TMEV subgroup‐specific biological activities.  相似文献   

20.
目的制备小鼠脑脊髓炎病毒(TMEV)标准血清,建立ELISA检测方法,实现一种病毒多种检测方法的比对研究。方法用TMEV感染3周龄SPF级BALB/c小鼠,制备免疫用抗原。分别在0、7、14d以腹腔注射的方式免疫SPF级6-8周龄BALB/c小鼠,免疫血清用IFA、IEA法进行鉴定;TMEV感染BHK-21细胞,制备EHSA抗原,确定酶结合物、抗原和标准阳性血清的最佳工作浓度,建立TMEVEHSA检测方法,进行敏感性、特异性、重复性和稳定性实验。结果制备TMEV免疫血清,以IFA、IEA测定血清效价分别为1:640和1:320,与痘苗病毒、小鼠肺炎病毒、小鼠肝炎病毒、仙台病毒和呼肠孤病毒-Ⅲ型均无交叉反应;建立了ELISA检测方法,确立了各种试剂的最佳工作浓度,其中酶结合物最佳工作浓度为1:10000,抗原为2.5μg/mL,阳性参考血清为1:200;EHSA检测灵敏度为1:3200。板内特异抗原、正常抗原平均变异系数为4.67%和5.7%,板间为4.39%和7.61%。稳定性实验相对偏差均小于20%。结论本研究制备的TMEV免疫血清可作为血清学检测方法中的标准质控血清;建立的ELISA方法重复性、稳定性好,敏感性和特异性强,可用于小鼠脑脊髓炎病毒血清抗体检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号