首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusion of plant protoplasts by electric fields   总被引:3,自引:1,他引:3       下载免费PDF全文
The electrical fusion technique of Zimmermann and Scheurich (1981 Planta 151: 26-32) has been used to fuse mesophyll protoplasts of Avena, Zea, Vigna, Petunia, and Amaranthus. Electrical fusion proves to be a simple, effective, and general fusion technique that can be controlled to form either dikaryons or large multinucleate fusion bodies. In addition, we show that Vigna mesophyll protoplasts that are subjected to the electrical fields used in this technique are viable in culture. The construction of the fusion chambers, necessary electrical equipment, and the fusion protocol are described in sufficient detail for reproduction of the technique.  相似文献   

2.
The electrical parameters important in the fusion of plant protoplasts aligned dielectrophoretically in high-frequency alternating electric fields have been established. Protoplasts were aligned in an alternating electric field between two relatively distant (1 mm) electrodes, by dielectrophoresis induced by field inhomogeneities caused by the protoplasts themselves. This arrangement allowed ease of manipulations, large throughput and low loss of protoplasts. In analytical experiments, sufficiently large samples could be used to study pulse duration-fusion response relations at different pulse voltages for protoplasts of different species, tissues and size (mesophyll protoplasts of Solanum brevidens, Triticum aestivum, Hordeum vulgare; suspension-culture protoplasts of Nicotiana sylvestris, N. rustica, Datura innoxia and S. brevidens; root-tip protoplasts of Vicia faba, hypocotyl protoplasts of Brassica napus). The percentage of aligned protoplasts that fused increased with increasing pulse parameters (pulse duration; voltage) above a threshold that was dependant on pulse voltage. The maximum fusion values obtained depended on a number of factors including protoplast origin, size and chain length. Leaf mesophyll protoplasts fused much more readily than suspension-culture protoplasts. For both types, there was a correlation of size with fusion yield: large protoplasts tended to fuse more readily than small protoplasts. In short chains (five protoplasts), fusion frequency was lower, but the proportion of one-to-one products was greater than in long chains (ten protoplasts). In formation by electrofusion of heterokaryons between mesophyll and suspension-culture protoplasts, the fusion-frequency response curves reflected those of homofusion of mesophyll protoplasts rather than suspension-culture protoplasts. There was no apparent limitation to the fusion of the smallest mesophyll protoplast with the largest suspension-culture protoplasts. Based on these observations, it is possible to direct fusion towards a higher frequency of one-to-one (mesophyll/suspension) products by incorporating low densities of mesophyll protoplasts in high densities of suspensionculture protoplasts and by using a short fusion pulse. The viability of fusion products, assessed by staining with fluorescein diacetate, was not impaired by standard fusion conditions. On a preparative scale, heterokaryons (S. brevidens mesophyll-N. sylvestris or D. innoxia suspension-culture) were produced by electrofusion and cultured in liquid or embedded in agar, and were capable of wall formation, division and growth. It is concluded that the electrode arrangement described is more suitable for carrying out directed fusions of plant protoplasts than that employing closer electrodes.  相似文献   

3.
High frequency fusion of plant protoplasts by electric fields   总被引:5,自引:0,他引:5  
Mesophyll cell protoplasts of Vicia faba were collected by dielectrophoresis in a highly inhomogeneous alternating electric field (sine wave, 5 to 10 V peak-to-peak value, 500 kHz, electrode distance 200 m). Under these conditions, the cells formed aggregates of two or three on the electrodes or bridges consisting of 4 to 6 protoplasts between the electrodes. This pearl chain arrangement of the cells was only stable for the duration of the applied field. By the additional application of a high single field pulse (square wave, 15 V, 50 s), it was possible to induce cell fusion within the aggregates or bridges. This electrically stimulated fusion of cells proceeded at room temperature and under physiological pH-conditions, without the use of chemical reagents, and gave a high yield. Smaller fused aggregates formed spheres within a few minutes. During the dielectrophoretically induced adhesion of the protoplasts to one another, the field strength must be chosen such that dielectric breakdown of the membrane is avoided, but at the same time, the strength of the subsequently applied single field pulse must be high enough to induce dielectric breakdown at the sites of contact between the protoplast membranes. From these results, one can conclude that in addition to close contact between membranes, the prerequisite for electrically stimulated cell fusion is dielectric breakdown which leads to changes in the membrane conductance, permeability, and probably fluidity.Presented at II Congress FESPP, Santiago de Compostela, Spain, 27.7.–1.8.1980, and Gordon Research Conference of Bioelectrochemistry, Tilton, New Hampshire, USA, 4.8.–8.8.1980  相似文献   

4.
Electropermeabilized tobacco mesophyll protoplasts are shown to fuse by creating cell contact several minutes after electropulsation. Electropermeabilization was analysed by measuring calcein uptake. Experiments were performed at low temperature to avoid resealing of protoplast transient permeation structures. These results confirm that the long-lived permeabilized state induced by the electric field is associated to a fusogenic state, under viability conditions. This is indicative that as for mammalian cells, the electric field-induced membrane modifications, which give the permeable state, are such as to decrease the magnitude of the intercellular repulsive forces between plant protoplasts. Such a fusion method may be useful for somatic hybrids production with protoplasts showing morphological and physiological differences.  相似文献   

5.
Alternating electric fields stimulate ATP synthesis in Escherichia coli   总被引:1,自引:0,他引:1  
External alternating electric fields of low intensity stimulated membrane bound ATP synthesis in starving Escherichia coli cells with electric field amplitudes of 2.5-50 V/cm and a frequency optimum at 100 Hz. The model of electrocon-formational coupling was used to analyze the frequency and amplitude responses of ATP synthesis. Two relaxation frequencies of the system were obtained at 44 Hz and 220 Hz, and an estimate of roughly 12 was obtained as the effective charge displacement for the catalytic cycle of ATP synthesis.  相似文献   

6.
Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger were subjected to two periods of 5 and 3 min, respectively, during which the extracellular Na(+) concentration ([Na(+)](o)) was reduced to 20 mm; these intervals were separated by a 5-min recovery period at 140 mm Na(+)(o). The cytosolic Ca(2+) concentration ([Ca(2+)](i)) increased during both intervals due to Na(+)-dependent Ca(2+) influx by the exchanger. However, the peak rise in [Ca(2+)](i) during the second interval was only 26% of the first. The reduced rise in [Ca(2+)](i) was due to an inhibition of Na(+)/Ca(2+) exchange activity rather than increased Ca(2+) sequestration since the influx of Ba(2+), which is not sequestered by internal organelles, was also inhibited by a prior interval of Ca(2+) influx. Mitochondria accumulated Ca(2+) during the first interval of reduced [Na(+)](o), as determined by an increase in fluorescence of the Ca(2+)-indicating dye rhod-2, which preferentially labels mitochondria. Agents that blocked mitochondrial Ca(2+) accumulation (uncouplers, nocodazole) eliminated the observed inhibition of exchange activity during the second period of low [Na(+)](o). Conversely, diltiazem, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, increased mitochondrial Ca(2+) accumulation and also increased the inhibition of exchange activity. We conclude that Na(+)/Ca(2+) exchange activity is regulated by a feedback inhibition process linked to mitochondrial Ca(2+) accumulation.  相似文献   

7.
Pulsed electric fields (PEFs) are commonly used to facilitate the delivery of various molecules, including pharmaceuticals, into living cells. However, the applied protocols still require optimization regarding the conditions of the permeabilization process, i.e., pulse waveform, voltage, duration, and the number of pulses in a burst. This study highlights the importance of electrochemical processes involved in the electropermeabilization process, known as electroporation. This research investigated the effects of electroporation on human non-small cell lung cancer cells (A549) in potassium (SKM) and HEPES-based buffers (SHM) using sub-microsecond and microsecond range pulses. The experiments were performed using 100 ns – 100 μs (0.6–15 kV/cm) bursts with 8 pulses in a sequence. It was shown that depending on the buffer composition, the susceptibility of cells to PEF varies, while calcium enhances the cytotoxic effects of PEF, if high cell membrane permeabilization is triggered. It was also determined that electroporation with calcium ions induces oxidative stress in cells, including lipid peroxidation (LPO), generation of reactive oxygen species (ROS), and neutral lipid droplets. Here, we demonstrated that calcium ions and optimized pulse parameters could potentiate PEF efficacy and oxidative alternations in lung cancer cells. Thus, the anticancer efficacy of PEF in lung cancers in combination with standard cytostatic drugs or calcium ions should be considered, but this issue still requires in-depth detailed studies with in vivo models.  相似文献   

8.
Summary Initially non-polar protoplasts of the green algaMougeotia will regenerate to re-establish their original cylindrical cell shape. The orientation of the growth axis of regenerating protoplasts held in agarose was independent of both the direction of incident white light and gravity. Protoplasts elongated parallel to applied DC electric fields of approx. 0.2 Vcm–1 (1 mV/protoplast) and greater, with an increasing percentage oriented with increasing field strength. At the maximum field strength used (10 mV/cell), 53% of protoplasts were oriented within +- 10° of the 0/180° axis of the field. In untreated controls, the orientation of elongation was random. Protoplast survival was unaffected by field treatment. Some protoplasts (up to 37% in 10 mV/cell fields) formed outgrowths towards the cathode and occasionally towards the anode. Regenerating protoplasts in fields displayed the normal sequence of microtubule reorganization. This means that the positioning of the ordered symmetrical array of microtubules centred on two foci that appears within 3 to 4 h, and the subsequent organization of microtubules by 8 to 12 h into a band that intersects both foci and which is transverse to the axis of elongation (Galway and Hardham 1986), may be controlled by externally applied electric fields. In the region of this microtubule band, the applied field causes the plasma membrane to be stretched parallel to the field (Bryant and Wolfe 1987). We suggest that microtubules may become oriented perpendicular to the direction of field-induced membrane stretching, and that membrane stretching may be one of the orienting mechanisms for membrane-linked microtubules in elongating plant cells.Abbreviations PBS phosphate buffered saline - PMM protoplast maintenance medium - DMM dilute maintenance medium - MES 2(N-morpholino)ethanesulfonic acid - TRIS tris(hydroxymethyl)aminomethane - ANOVA analysis of variance  相似文献   

9.
Beans exposed to intense static electric fields are observed to experience large scale damage although corona occurs from only a few points on the leaves. Increased evaporative loss is considered to be the physical mechanism which accounts for the observed effects.  相似文献   

10.
The dependence of electrogenic sodium pump activity on changes in the cell volume of Helix pomatia neurons with different levels of intracellular sodium ion concentration was studied. Hypertonic solutions caused hyperpolarization of the membrane and increased membrane resistance in cells with a low sodium content (low-sodium cells; LSC). The activity of the electrogenic sodium pump in hypertonic solutions was increased compared to the activity in hypotonic solutions in LSC and decreased in cells with a high sodium content (high-sodium cells; HSC). The concentration of ouabain which led to maximal inhibition of active 22Na efflux from the neurons was 10(-4) M. Lower concentrations of ouabain (10(-8) M and lower) did not inhibit the sodium pump but stimulated it. The swelling of neurons in hypotonic solutions was accompanied by an increase in the number of binding sites for ouabain, while shrinking in hypertonic solutions led to the opposite effect--a decrease in binding sites. An increase in the number of binding sites also took place in normal isotonic potassium-free solutions compared with normal Ringer's solution. Two saturable components of ouabain binding were detectable in all solutions examined. gamma-Aminobutyric acid (GABA) and acetylcholine (ACh) increased the number of ouabain binding sites on the membrane. The results suggest that there are two opposite mechanisms by which cell volume changes can modulate the pump activity. One of them depends on the intracellular sodium ion concentration and causes pump activation in hypertonic solutions in LSC and saturation in HSC, while a second mechanism mediates the activating effect of cell swelling on the sodium pump in HSC. In addition, there may be a negative feedback between the pump activity and the number of functioning pump units in the membrane.  相似文献   

11.
Rat heart mitochondria respiring on succinate in the presence of Ruthenium Red (to inhibit uptake on the Ca2+ uniporter) released Ca2+ on the calcium/sodium antiporter until a steady state was reached. Addition of the ionophore A23187 (which catalyses Ca2+/2H+ exchange) did not perturb this steady state. Thermodynamic analysis showed that if a Ca2+/nNa+ exchange with any value of n other than 2 was at equilibrium, addition of A23187 would cause an obvious change in extramitochondrial free [Ca2+]. Therefore the endogenous calcium/sodium antiporter of mitochondria catalyses electroneutral Ca2+/2Na+ exchange.  相似文献   

12.
High concentrations of cytosolic Na+ ions induce the time-dependent formation of an inactive state of the Na+/Ca2+ exchanger (NCX), a process known as Na+-dependent inactivation. NCX activity was measured as Ca2+ uptake in fura 2-loaded Chinese hamster ovary (CHO) cells expressing the wild-type (WT) NCX or mutants that are hypersensitive (F223E) or resistant (K229Q) to Na+-dependent inactivation. As expected, 1) Na+-dependent inactivation was promoted by high cytosolic Na+ concentration, 2) the F223E mutant was more susceptible than the WT exchanger to inactivation, whereas the K229Q mutant was resistant, and 3) inactivation was enhanced by cytosolic acidification. However, in contrast to expectations from excised patch studies, 1) the WT exchanger was resistant to Na+-dependent inactivation unless cytosolic pH was reduced, 2) reducing cellular phosphatidylinositol-4,5-bisphosphate levels did not induce Na+-dependent inactivation in the WT exchanger, 3) Na+-dependent inactivation did not increase the half-maximal cytosolic Ca2+ concentration for allosteric Ca2+ activation, 4) Na+-dependent inactivation was not reversed by high cytosolic Ca2+ concentrations, and 5) Na+-dependent inactivation was partially, but transiently, reversed by an increase in extracellular Ca2+ concentration. Thus Na+-dependent inactivation of NCX expressed in CHO cells differs in several respects from the inactivation process measured in excised patches. The refractoriness of the WT exchanger to Na+-dependent inactivation suggests that this type of inactivation is unlikely to be a strong regulator of exchange activity under physiological conditions but would probably act to inhibit NCX-mediated Ca2+ influx during ischemia. ischemia; cytosolic calcium concentration; cytosolic sodium concentration; cellular phosphatidylinositol-4,5-bisphosphate  相似文献   

13.
14.
It was found that the birefringence of aqueous solutions of sodium DNA is anomalous when electric fields of high intensity (≥104 v/cm) are applied. The magnitude of the birefringence first rose upon application of the orienting pulse, then fell as the field was sustained above a critical value. The occurrence of the effect depended upon macromolecular and electrolyte concentrations. Upon removal of the field, the birefringence was rapidly restored and then it decayed with an increase of the reorientational relaxation times, relative to those observed below the critical field. It is proposed that the electric field may cause aggregation of the macromolecules and then produce a structural transition concomitant with the electric field orientation effect. This transition may correspond to the “B” “A” structures identified in x-ray studies, or to a “B” “V” structure change, where “V” is a postulated new helical form stabilized by cooperative interactions of base and dipoles in the electric field. Field induced transitions of this type would be of interest in connection with molecular mechanisms of transport through membranes, nerve impulse transmission, or information storage.  相似文献   

15.
Transmembrane calcium influx induced by ac electric fields.   总被引:2,自引:0,他引:2  
Exogenous electric fields induce cellular responses including redistribution of integral membrane proteins, reorganization of microfilament structures, and changes in intracellular calcium ion concentration ([Ca2+]i). Although increases in [Ca2+]i caused by application of direct current electric fields have been documented, quantitative measurements of the effects of alternating current (ac) electric fields on [Ca2+]i are lacking and the Ca2+ pathways that mediate such effects remain to be identified. Using epifluorescence microscopy, we have examined in a model cell type the [Ca2+]i response to ac electric fields. Application of a 1 or 10 Hz electric field to human hepatoma (Hep3B) cells induces a fourfold increase in [Ca2+]i (from 50 nM to 200 nM) within 30 min of continuous field exposure. Depletion of Ca2+ in the extracellular medium prevents the electric field-induced increase in [Ca2+]i, suggesting that Ca2+ influx across the plasma membrane is responsible for the [Ca2+]i increase. Incubation of cells with the phospholipase C inhibitor U73122 does not inhibit ac electric field-induced increases in [Ca2+]i, suggesting that receptor-regulated release of intracellular Ca2+ is not important for this effect. Treatment of cells with either the stretch-activated cation channel inhibitor GdCl3 or the nonspecific calcium channel blocker CoCl2 partially inhibits the [Ca2+]i increase induced by ac electric fields, and concomitant treatment with both GdCl3 and CoCl2 completely inhibits the field-induced [Ca2+]i increase. Since neither Gd3+ nor Co2+ is efficiently transported across the plasma membrane, these data suggest that the increase in [Ca2+]i induced by ac electric fields depends entirely on Ca2+ influx from the extracellular medium.  相似文献   

16.
Plant roots generate electrical currents and associated electrical fields as a consequence of electrogenic ion transport at the root surface. Here we demonstrate that the attraction of swimming zoospores of oomycete plant pathogens to plant roots is mediated in part by electrotaxis in natural root-generated electric fields. The zones of accumulation of anode- or cathode-seeking zoospores adjacent to intact and wounded root surfaces correlated with their in vitro electrotactic behavior. Manipulation of the root electrical field was reflected in changes in the pattern of zoospore accumulation and imposed focal electrical fields were capable of overriding endogenous signals at the root surface. The overall pattern of zoospore accumulation around roots was not affected by the presence of amino acids at concentrations expected within the rhizosphere, although higher concentrations induced encystment and reduced root targeting. The data suggest that electrical signals can augment or override chemical ones in mediating short-range tactic responses of oomycete zoospores at root surfaces.  相似文献   

17.
This study explores the effect of extracellular Ca2+ concentration ([Ca2+]o), on the intracellular Na+ concentration ([Na+]i), in frog intact hearts using nuclear magnetic resonance spectroscopy, which allows for the measurement of [Na+]i in perfused, beating hearts. Decreases in [Ca2+]o yielded marked increases in [Na+]i. A similar effect was seen during inhibition of the Na+/K+ pump and was fully reversible. This sensitivity of [Na+]i to [Ca2+]o, previously observed using microelectrodes, supports a crucial physiological role for Na+/Ca2+ exchange in frog intact, beating hearts.  相似文献   

18.
19.
Changes in [Ca2+]i response of individual Jurkat cells to nanosecond pulsed electric fields (nsPEFs) of 60 ns and field strengths of 25, 50, and 100 kV/cm were investigated. The magnitude of the nsPEF-induced rise in [Ca2+]i was dependent on the electric field strength. With 25 and 50 kV/cm, the [Ca2+]i response was due to the release of Ca2+ from intracellular stores and occurred in less than 18 ms. With 100 kV/cm, the increase in [Ca2+]i was due to both internal release and to influx across the plasma membrane. Spontaneous changes in [Ca2+]i exhibited a more gradual increase over several seconds. The initial, pulse-induced [Ca2+]i response initiates at the poles of the cell with respect to electrode placement and co-localizes with the endoplasmic reticulum. The results suggest that nsPEFs target both the plasma membrane and subcellular membranes and that one of the mechanisms for Ca2+ release may be due to nanopore formation in the endoplasmic reticulum.  相似文献   

20.
Characteristics of electrogenic sodium pumping in rat myometrium   总被引:9,自引:1,他引:8  
Sodium-rich myometrium, obtained from the uteri of pregnant rats, rapidly hyperpolarized when 4.6–120 mM potassium was added to the bathing medium at 37°C. Hyperpolarization was due to sodium pumping since the process was markedly temperature dependent, was abolished by ouabain, and required both intracellular sodium and extracellular potassium. The observed membrane potential exceeded the calculated potassium equilibrium potential during hyperpolarization providing evidence that sodium pumping was electrogenic. Hyperpolarization was reduced in the presence of chloride. The rate of sodium pumping may influence potassium permeability since potassium apparently did not short-circuit the pump during hyperpolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号