首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The HUGO Gene Nomenclature Committee (HGNC) assigns approved gene symbols to human loci. There are currently over 33,000 approved gene symbols, the majority of which represent protein-coding genes, but we also name other locus types such as non-coding RNAs, pseudogenes and phenotypic loci. Where relevant, the HGNC organise these genes into gene families and groups. The HGNC website http://www.genenames.org/ is an online repository of HGNC-approved gene nomenclature and associated resources for human genes, and includes links to genomic, proteomic and phenotypic information. In addition to this, we also have dedicated gene family web pages and are currently expanding and generating more of these pages using data curated by the HGNC and from information derived from external resources that focus on particular gene families. Here, we review our current online resources with a particular focus on our gene family data, using it to highlight our new Gene Symbol Report and gene family data downloads.  相似文献   

2.
The HUGO Gene Nomenclature Committee (HGNC) is the only organisation authorised to assign standardised nomenclature to human genes. Of the 38,000 approved gene symbols in our database (http://www.genenames.org), the majority represent protein-coding (pc) genes; however, we also name pseudogenes, phenotypic loci, some genomic features, and to date have named more than 8,500 human non-protein coding RNA (ncRNA) genes and ncRNA pseudogenes. We have already established unique names for most of the small ncRNA genes by working with experts for each class. Small ncRNAs can be defined into their respective classes by their shared homology and common function. In contrast, long non-coding RNA (lncRNA) genes represent a disparate set of loci related only by their size, more than 200 bases in length, share no conserved sequence homology, and have variable functions. As with pc genes, wherever possible, lncRNAs are named based on the known function of their product; a short guide is presented herein to help authors when developing novel gene symbols for lncRNAs with characterised function. Researchers must contact the HGNC with their suggestions prior to publication, to check whether the proposed gene symbol can be approved. Although thousands of lncRNAs have been predicted in the human genome, for the vast majority their function remains unresolved. lncRNA genes with no known function are named based on their genomic context. Working with lncRNA researchers, the HGNC aims to provide unique and, wherever possible, meaningful gene symbols to all lncRNA genes.  相似文献   

3.
The HUGO Gene Nomenclature Committee (HGNC) Comparison of Orthology Predictions (HCOP) search tool combines the human, mouse, rat and chicken orthology assertions made by PhIGs, HomoloGene, Ensembl, Inparanoid, Mouse Genome Informatics (MGI) and HGNC, enabling users to identify predicted ortholog pairs for a specified gene or genes. The HCOP resource provides a useful method to integrate, compare and access a variety of disparate sources of human orthology data. The HCOP search tool, data and documentation are available at http://www.gene.ucl.ac.uk/hcop.  相似文献   

4.
The HUGO Gene Nomenclature Committee has approved gene symbols for the majority of protein-coding genes on the human reference genome. To adequately represent regions of complex structural variation, the Genome Reference Consortium now includes alternative representations of some of these regions as part of the reference genome. Here, we describe examples of how we name novel genes in these regions and how this nomenclature is displayed on our website, http://genenames.org.  相似文献   

5.
The seven-transmembrane (7TM) G-protein-coupled neuroendocrine receptors VPAC1 (HGNC approved gene symbol VIPR1) and VPAC2 (HGNC approved gene symbol VIPR2) are expressed in different tissues and involved in the regulation of important biological functions. We now report the identification and characterization of novel five-transmembrane(5TM) forms of both human VPAC1 and human VPAC2. These alternatively spliced variant mRNAs result from the skipping of exons 10/11, spanning the third intracellular loop, the fourth extracellular loop, and the transmembrane regions 6 and 7, producing in-frame 5TM receptors predicted to lack a G-protein-binding motif. RT-PCR showed that these 5TM receptors are differentially expressed in transformed and normal cells. Translation of the 5TM protein was demonstrated by transfection and expression in CHO cells. Following agonist stimulation, differential signaling of the 7TM versus 5TM forms was shown both for the activation of adenylate cyclase and for tyrosine phosphorylation. The identification of these splice variants in various cells and their expression and differential signal transduction compared to the 7TM form suggest that these novel receptors have biological relevance.  相似文献   

6.
The real-time polymerase chain reaction (PCR) methodology has become increasingly popular for nucleic acids detection and/or quantification. As primer/probe design and experimental evaluation is time-consuming, we developed a public database application for the storage and retrieval of validated real-time PCR primer and probe sequence records. The integrity and accuracy of the data are maintained by linking to and querying other reference databases. RTPrimerDB provides free public access through the Web to perform queries and submit user based information. Primer/probe records can be searched for by official gene symbol, nucleotide sequence, type of application, detection chemistry, LocusLink or Single Nucleotide Polymorphism (SNP) identifier, and submitter's name. Each record is directly linked to LocusLink, dbSNP and/or PubMed to retrieve additional information on the gene/SNP for which the primers/probes are designed. Currently, the database contains primer/probe records for human, mouse, rat, fruit fly and zebrafish, and all current detection chemistries such as intercalating dyes (SYBR Green I), hydrolysis probes (Taqman), adjacent hybridizations probes and molecular beacons. Real-time PCR primer/probe records are available at http://www.realtimeprimerdatabase.ht.st.  相似文献   

7.
We present the BPIFAn/BPIFBn systematic nomenclature for the PLUNC (palate lung and nasal epithelium clone)/PSP (parotid secretory protein)/BSP30 (bovine salivary protein 30)/SMGB (submandibular gland protein B) family of proteins, based on an adaptation of the SPLUNCn (short PLUNCn)/LPLUNCn (large PLUNCn) nomenclature. The nomenclature is applied to a set of 102 sequences which we believe represent the current reliable data for BPIFA/BPIFB proteins across all species, including marsupials and birds. The nomenclature will be implemented by the HGNC (HUGO Gene Nomenclature Committee).  相似文献   

8.
Cytochrome c (Cyt c) has key roles in both mitochondrial electron transfer and apoptosis onset and is therefore likely undergoing a strong selective pressure against amino acid variation. Nevertheless, a phylogenetically fast amino acid replacement rate in the Cyt c of species of the anthropoid primate lineage was recently reported. We therefore looked for the presence of nonsynonymous single nucleotide polymorphisms (nsSNPs) in the human Cyt c (HGNC approved gene symbol: CYCS), which, given its cellular constraints, could have important functional consequences, and found a large number of putative nsSNPs reported in the dbSNP database. We then subjected these putative SNPs to experimental validation by sequencing the Cyt c gene in a panel of 95 individuals assumed as a standard reference of the human population diversity. Surprisingly, none of the putative SNPs survived experimental validation. We conclude that non-rare allelic variants of the Cyt c protein are absent in the human populations analyzed in this study.  相似文献   

9.
The Kelch-like (KLHL) gene family encodes a group of proteins that generally possess a BTB/POZ domain, a BACK domain, and five to six Kelch motifs. BTB domains facilitate protein binding and dimerization. The BACK domain has no known function yet is of functional importance since mutations in this domain are associated with disease. Kelch domains form a tertiary structure of β-propellers that have a role in extracellular functions, morphology, and binding to other proteins. Presently, 42 KLHL genes have been classified by the HUGO Gene Nomenclature Committee (HGNC), and they are found across multiple human chromosomes. The KLHL family is conserved throughout evolution. Phylogenetic analysis of KLHL family members suggests that it can be subdivided into three subgroups with KLHL11 as the oldest member and KLHL9 as the youngest. Several KLHL proteins bind to the E3 ligase cullin 3 and are known to be involved in ubiquitination. KLHL genes are responsible for several Mendelian diseases and have been associated with cancer. Further investigation of this family of proteins will likely provide valuable insights into basic biology and human disease.  相似文献   

10.
The Mendel database contains names for plant-wide families of sequenced plant genes. The names have either been approved by the Commission on Plant Gene Nomenclature (CPGN), an organization of the International Society for Plant Molecular Biology (ISPMB), or are identified as provisional or temporary names. Mendel also identifies the corresponding genes in individual species of plants. Mendel can be searched through the mirror sites at Cornell (http://genome. cornell.edu/cgi-bin/WebAce/webace?db=mendel) and Stanford (http://genome-www.stanford.edu/Mendel/). In addition, parts of Mendel can be downloaded from the CPGN Web site (http://mbclserver. rutgers.edu/CPGN/).  相似文献   

11.
While the Human Genome Nomenclature Committee (HGNC) concept of the gene can accommodate a wide variety of genomic sequences contributing to phenotypic outcomes, it fails to specify how sequences should be grouped when dealing with complex loci consisting of adjacent/overlapping sequences contributing to the same phenotype, distant sequences shown to contribute to the same gene product, and partially overlapping sequences identified by different techniques. The purpose of this paper is to review recently proposed concepts of the gene and critically assess how well they succeed in addressing the above problems while preserving the degree of generality achieved by the HGNC concept. I conclude that a dynamic interplay between mapping and syntax-based concepts is required in order to satisfy these desiderata.  相似文献   

12.
Microhaplotypes are a new type of genetic marker in forensics and population genetics. A standardized nomenclature is desirable. A simple approach that does not require a central authority for approval is proposed. The nomenclature proposed follows the recommendation of the HUGO Gene Nomenclature Committee (http://www.genenames.org): “We strongly encourage naming families and groups of genes related by sequence and/or function using a “root” symbol. This is an efficient and informative way to name related genes, and already works well for a number of established gene families…” The proposal involves a simple root consisting of “mh” followed by the two-digit chromosome number and unique characters established by the authors in the initial publication. We suggest the unique symbol be an indication of the laboratory followed by characters unique to the chromosome and laboratory. For instance, the microhaplotype symbol mh01KK-001 refers to a locus on chromosome 1 published by the Kidd Lab (KK-) as their #001. Publication defines mh01KK-001 as comprised of four single nucleotide polymorphisms (SNPs), rs4648344, rs6663840, rs58111155, and rs6688969.  相似文献   

13.
By searching the Expressed Sequence Tag database, a full-length cDNA for a novel human CC chemokine was cloned. This cDNA encoded a 94-amino-acid protein with a putative signal peptide of 26 amino acids. The deduced mature protein had the four conserved cysteine residues characteristic of CC chemokines and showed 44% identity with MIP-1beta and 40% identity with MIP-1alpha, RANTES, and MCP-4. mRNA for this chemokine was expressed constitutively in human heart and liver and with lesser but detectable levels in skeletal muscle, kidney, and small intestine. To investigate its biological activity, the protein was expressed in mammalian cells and purified by affinity chromatography. The recombinant protein demonstrated chemotactic activity in vitro for T cells and monocytes but not for neutrophils. The gene was mapped to chromosome 7q11.2 by fluorescence in situ hybridization. Based on its structural identity with other CC chemokines and the chemotactic activity and chromosomal location of this chemokine, we designate this chemokine small inducible cytokine subfamily A, member 26 (SCYA26). This gene symbol has been approved by the HUGO Gene Nomenclature Committee.  相似文献   

14.
 在染色体 9p2 1 2 2鼻咽癌杂合性丢失 (lossofheterozygosity,LOH)高频区 ,应用EST介导的定位 侯选克隆策略 ,用RT PCR及Northern杂交检测了 2 2个表达序列标记 (expressedsequencetag ,EST)在鼻咽癌细胞株HNE1和原代培养的正常鼻咽上皮细胞中的表达差异 ,并对其中一个在鼻咽癌细胞株HNE1中表达下调的EST检测了在鼻咽癌活检组织中的表达 .用生物信息学方法获得其全长cDNA序列 ,GenBank登录号AF2 2 2 0 4 3.该基因cDNA全长 2 70 1bp ,其开放阅读框 (openreadingframe ,ORF)编码一个含 50 2个氨基酸、分子量为 55kD的碱性蛋白质 ,在蛋白羧基端含有 2个连续的重要UBA功能域 (ubiquitinassociateddomain) ,属于遍在蛋白相关蛋白家族的一个新成员 ,经国际人类基因命名委员会同意 ,将其命名为UBAP1 (ubiquitinassociatedprotein 1 ) .Northern表达分析显示UBAP1在所检测的人组织中广泛表达 ,但在人的心脏、骨骼肌及肝脏中的表达较强 .UBAP1基因在63 2 % ( 1 2 1 9)的鼻咽癌活检组织中表达下调 .UBAP1基因作为一个遍在蛋白相关蛋白家族的新成员 ,结合其在 9p的重要定位信息 ,有必要进一步研究其表达下调参与鼻咽癌发生发展的可能机制 .  相似文献   

15.
根据计算机克隆的ZNF418基因序列设计引物,从人类胚胎心脏文库中克隆了一个人类新KRAB/C2H2型锌指基因,经国际基因命名委员会批准命名为ZNF418。该基因位于染色体19 q13.43,编码蛋白由676个氨基酸残基组成的、含有1个KRAB框和17个连续排列的C2H2型锌指的蛋白质。Northern杂交的结果表明该基因在多种成人组织中表达;亚细胞定位研究证明ZNF418蛋白主要分布在胞核中。这些结果提示该基因编码一种潜在的转录因子。  相似文献   

16.
17.
GDB: the Human Genome Database.   总被引:6,自引:0,他引:6       下载免费PDF全文
The Genome Database (GDB, http://www.gdb.org ) is a public repository of data on human genes, clones, STSs, polymorphisms and maps. GDB entries are highly cross-linked to each other, to literature citations and to entries in other databases, including the sequence databases, OMIM, and the Mouse Genome Database. Mapping data from large genome centers and smaller mapping efforts are added to GDB on an ongoing basis. The database can be searched by a variety of methods, ranging from keyword searches to complex queries. Major functionality extensions in the last year include the ongoing computation of integrated human genome maps, called Comprehensive Maps, and the use of those maps to support positional queries and graphic displays. The capabilities of the GDB map viewer (Mapview) have been extended to include map printing and the graphical display of ad hoc query results. The HUGO Nomenclature Committee continues to curate the proposed and official gene symbols and related data in collaboration with GDB. As genome research shifts its emphasis from mapping to sequencing and functional analysis, the scope of the GDB schema is being extended. We are in the process of adding representations of gene function and expression, and improving our representation of human polymorphism and mutation.  相似文献   

18.
19.
The nucleotide sequence data reported here have been submitted to the Genome Sequence Database and have been assigned the accession number L32810. The name DRB1 *0811 was officially assigned by the WHO Nomenclature Committee in March 1994. This follows the policy that, subject to the conditions stated in the most recent Nomenclature Report (Bodmer et al. 1992), names will be assigned to new sequences as they are identified. Lists of such new names will be published in the following WHO Nomenclature Report  相似文献   

20.
The RNA Modification Database: 1999 update.   总被引:37,自引:17,他引:20       下载免费PDF全文
The RNA Modification Database (http://medlib.med.utah.edu/RNAmods/) provides a comprehensive listing of naturally modified nucleosides in RNA. Each file includes: chemical structure; common name and symbol; type(s) of RNA in which found and corresponding phylogenetic distribution; Chemical s registry number and index name; and initial literature citations for structure characterization and chemical synthesis. New features include capability to search database files by name or substructural features, modifications in tmRNA, and links to related data and sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号