首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of butanol on Clostridium acetobutylicum   总被引:3,自引:0,他引:3  
The internal pH of Clostridium acetobutylicum was determined at various stages during the growth of the organism. Even in the presence of significant quantities of acetic, butyric, and lactic acids, an internal pH of 6.2 was maintained. Experiments using N,N'-dicyclohexylcarbodiimide indicated that a functioning H+-ATPase is necessary for internal pH control. Butanol, one of the end products of the fermentation, had numerous harmful effects on C. acetobutylicum. At a concentration high enough to inhibit growth, butanol destroyed the ability of the cell to maintain internal pH, lowered the intracellular level of ATP, and inhibited glucose uptake. Experiments done at two different external pH values suggested that the butanol-mediated decrease in ATP concentration was independent of the drop in internal pH. Glucose uptake was not affected by arsenate, suggesting that uptake was not ATP dependent. The effects of butanol on C. acetobutylicum are complex, inhibiting several interrelated membrane processes.  相似文献   

2.
研究在培养基中加入不同电子载体对丁醇发酵的影响。结果表明:添加微量的苄基紫精可以促进丁醇的产生,同时可强烈抑制丙酮的合成,丁醇体积分数由66.92%提高到82.35%。苄基紫精可促进菌株快速进入产溶剂期,发酵周期明显缩短,丁醇生产强度显著提高。7%玉米培养基中加入40 mg/L苄基紫精,丁醇产量最高达16.10 g/L,生产强度为0.37 g/(L.h),分别较对照提高10.96%和60.87%。在初始丁醇体积分数较低的条件下,苄基紫精对丁醇合成的促进作用更明显。  相似文献   

3.
Extractive acetone-butanol-ethanol (ABE) fermentation was carried out successfully using pervaporation and a low-acid-producing Clostridium acetobutylicum B18. A pervaporation module with 0.17 m(2) of surface area was made of silicone membrane of 240 mum thickness. Pervaporation experiments using make-up solutions showed that butanol and acetone fluxes increased linearly with their concentrations in the aqueous phase. Fickian diffusion coefficients were constants for fixed air flow rates, and increased at higher sweep air flow rates. During batch and fed-batch fermentations, pervaporation at an air flow rate of 8 L/min removed butanol and acetone efficiently. Butanol concentration was maintained below 4.5 g/L even though Clostridium acetobutylicum B18 produced butanol steadily. Pervaporation could not remove organic acids efficiently, but organic acids did not accumulate because strain B18 produced little organic acid and recycled added organic acids efficiently. With pervaporation, glucose consumption rate increased compared to without pervaporation, and up to 160 g/L of glucose was consumed during 80 h. Cell growth was not inhibited by possible salt accumulation or oxygen diffusion through the silicone tubing. The culture volume was maintained relatively constant during fed-batch operation because of an offsetting effect of water and product removal by pervaporation and addition of nutrient supplements. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
Summary A system is described for the isolation of bacteria (Clostridium acetobutylicum) from broad beans, potatoes or maize. The isolates were tested in molasses medium and solvent yields up to 18–20 g/litre of butanol plus acetone were obtained.  相似文献   

5.
Biosynthetic thiolases catalyze the condensation of two molecules acetyl‐CoA to acetoacetyl‐CoA and represent key enzymes for carbon–carbon bond forming metabolic pathways. An important biotechnological example of such a pathway is the clostridial n‐butanol production, comprising various natural constraints that limit titer, yield, and productivity. In this study, the thiolase of Clostridium acetobutylicum, the model organism for solventogenic clostridia, was specifically engineered for reduced sensitivity towards its physiological inhibitor coenzyme A (CoA‐SH). A high‐throughput screening assay in 96‐well microtiter plates was developed employing Escherichia coli as host cells for expression of a mutant thiolase gene library. Screening of this library resulted in the identification of a thiolase derivative with significantly increased activity in the presence of free CoA‐SH. This optimized thiolase comprised three amino acid substitutions (R133G, H156N, G222V) and its gene was expressed in C. acetobutylicum ATCC 824 to assess the effect of reduced CoA‐SH sensitivity on solvent production. In addition to a clearly delayed ethanol and acetone formation, the ethanol and butanol titers were increased by 46% and 18%, respectively, while the final acetone concentrations were similar to the vector control strain. These results demonstrate that thiolase engineering constitutes a suitable methodology applicable to improve clostridial butanol production, but other biosynthetic pathways involving thiolase‐mediated carbon flux limitations might also be subjected to this new metabolic engineering approach. Biotechnol. Bioeng. 2013; 110: 887–897. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
旨在研究化学改性的甘蔗渣作为固定化载体对丙酮丁醇梭菌Clostridium acetobutylicum XY16发酵制备生物丁醇的影响。首先利用不同浓度的聚乙烯亚胺(PEI)和1 g/L戊二醛(GA)对甘蔗渣表面进行化学改性,增强甘蔗渣对Clostridium acetobutylicum XY16的附载能力。经4 g/L聚乙烯亚胺和1 g/L戊二醛改性的甘蔗渣(添加量10 g/L)应用到固定化批次发酵中,发酵36 h后丁醇和总溶剂浓度最高,分别达到了12.24 g/L和21.67 g/L,同时溶剂的生产速率达到0.60 g/(L·h),生产速率比游离细胞和未改性甘蔗渣固定化细胞分批发酵分别提高了130.8%和66.7%。在此基础上对改性甘蔗渣固定化的细胞进行6次重复批次发酵,丁醇和总溶剂的产量稳定,溶剂生产速率逐渐提高至0.83 g/(L·h),同时转化率也提高至0.42 g/g。  相似文献   

7.
8.
Butanol, at sub-growth-inhibitory levels, caused a ca. 20 to 30% increase in fluidity of lipid dispersions from Clostridium acetobutylicum. When grown in the presence of butanol or into stationary phase, C. acetobutylicum synthesized increased levels of saturated acyl chains at the expense of unsaturated chains.  相似文献   

9.
10.
Summary When using shear activation of Clostridium acetobutylicum by pumping the cells through capillaries, the cell growth, glucose consumption and product formation rates are considerably increased. Shear-activated continuous cell culture can be used as an inoculum with a welldefined fermentation activity for batch cultures. Different runs of such batch cultivation yield well-reproducible results which could not be obtained from inocula of other cultures or even of heat-shocked spores. The cells can attain a growth rate higher than 1.6 h-1.The shear-activated continous culture growth is affected already at a butanol concentration lower than 1.6 g/l-1.  相似文献   

11.
非离子表面活性剂对生物丁醇发酵的影响   总被引:1,自引:0,他引:1  
传统的丙酮-丁醇发酵的产物浓度过低(丁醇终浓度约为1.3 wt%),导致后期分离成本过高,从而影响了该过程的经济性,限制了其工业化进程。本文研究了高添加量的小分子非离子表面活性剂对生物丁醇发酵的影响。以吐温80为例,实验表明,当表面活性剂添加量超过其临界胶束浓度后,丁醇发酵的终浓度会随着表面活性剂添加量的增加而增加。当添加量达到5 wt%时,丁醇终浓度可以达到1.6 wt%,远高于该菌种的抑制浓度(0.8 wt%)。为阐明表面活性剂的作用机理,实验考察了吐温80对丁醇的增溶效应以及对发酵菌体表面亲疏水性的影响。结果表明,吐温80对丁醇的增溶效果很小,而对菌体表面的亲疏水性有较明显的影响。  相似文献   

12.
Clostridium acetobutylicum exhibited diauxie growth in the presence of mixtures of glucose and xylose. Both glucose- and xylose-grown cells had a glucose uptake activity. On the other hand, growth on xylose was associated with the induction of a xylose permease activity, which was repressed by glucose in xylose-induced cells. The rate of sugar uptake with increasing sugar concentrations showed saturation kinetics with an apparent Km of 1.25 X 10(-5) M for glucose and 5 X 10(-3) M for xylose. Concomitant with the production of solvents, the activities of the glucose and xylose transport systems decreased. Among the main products of fermentation, butanol was shown to be a potent inhibitor of the growth of the organism and of the rate of sugar uptake as well as of sugar incorporation into cell materials. These inhibitory effects of butanol were more pronounced in xylose-grown cells than in glucose-grown cells. Butanol completely inhibited growth at a concentration of 14 g/liter for cultures growing on glucose and 8 g/liter for cultures growing on xylose. Concentrations of 7 and 10.5 g/liter of butanol caused a 50% inhibition of the xylose and glucose incorporations into cell materials. These inhibitory levels of butanol were found in typical glucose or xylose fermentation.  相似文献   

13.
14.
Fermentation characteristics of Clostridium acetobutylicum B18 were studied in batch experiments with and without pH control. This strain is shown to be potentially useful in simultaneous acetone-butanol-ethanol fermentation-separation systems because of its low acid production. In a pH-uncontrolled batch culture this strain produced mostly solvents, including 15 g/l of butanol. Ethanol production was low. Strain B18 recycled organic acids more efficiently than other strains. In particular, butyric acid was completely recycled when glucose was not limiting. Yield of liquid products (solvents plus organic acids) and carbon recovery in total products (gas plus liquid) were 33.1–36.4 wt% and 90–91 mol%, respectively, for 20–80 g/l of initial glucose. Glucose consumption and the percentage of butanol among solvents were higher at 32°C than at 37°C. Strain B18 required approximately 0.4 g/l of undissociated butyric acid at the onset of solvent production in pH-uncontrolled batch culture. The low undissociated butyric acid requirement enabled this strain to produce 13.8 g/l of butanol at a controlled pH of 6.0.Contribution no. 19998 of the Minnesota Agricultural Experiment Station Correspondence to: C.-H. Park  相似文献   

15.
Butanol, at sub-growth-inhibitory levels, caused a ca. 20 to 30% increase in fluidity of lipid dispersions from Clostridium acetobutylicum. When grown in the presence of butanol or into stationary phase, C. acetobutylicum synthesized increased levels of saturated acyl chains at the expense of unsaturated chains.  相似文献   

16.
Summary Reliable assay systems were developed for the detection and quantitation of butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum. Butanol dehydrogenase was NADPH-dependent. The enzyme could be sparated by ultracentrifugation from a NADH-specific enzyme which probably represents the ethanol dehydrogenase but which also reacted with butyraldehyde to form butanol. Butyraldehyde dehydrogenase proved to be NADH-specific. All enzymes were induced shortly before butanol formation began. Specific activities decreased at the end of the fermentation process. An explanation for contradictory data in the literature is proposed.  相似文献   

17.
Several high strength solids have been tested as carriers for acetone-butanol production by Clostridium acetobutylicum ATCC 824. In batch fermentation, coke, kaolinite and Gel White (a montmorillonite clay) appeared to have a beneficial effect on this fermentation, although the effectiveness appeared to be dependent on the medium used. One of the least expensive materials, coke, was found to be suitable for use in continuous culture. Steady state conditions could be maintained for more than 30 days with total solvent production, productivity and yield of 12 g/l, 1.12 g l−1h−1and 0.3 g TS/g glucose used, respectively.  相似文献   

18.
Mutant M5 of Clostridium acetobutylicum ATCC 824, which produces neither butanol nor acetone and is deficient in butyraldehyde dehydrogenase (BYDH), acetoacetate decarboxylase, and acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase activities, was transformed with plasmid pCAAD, which carries the gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol, 176:871-885, 1994). In batch fermentation studies, aad expression restored butanol formation (84 mM) in mutant M5 without any acetone formation or any significant increase in ethanol production. The corresponding protein (AAD) appeared as a ca. 96-kDa band in a denaturing protein gel. Expression of AAD in M5 resulted in restoration of BYDH activity and small increases in the activities of acetaldehyde dehydrogenase, butanol dehydrogenase, and ethanol dehydrogenase. These findings suggest that BYDH activity in C. acetobutylicum ATCC 824 resides largely in AAD, and that AAD's primary role is in the formation of butanol rather than of ethanol.  相似文献   

19.
Clostridium acetobutylicum exhibited diauxie growth in the presence of mixtures of glucose and xylose. Both glucose- and xylose-grown cells had a glucose uptake activity. On the other hand, growth on xylose was associated with the induction of a xylose permease activity, which was repressed by glucose in xylose-induced cells. The rate of sugar uptake with increasing sugar concentrations showed saturation kinetics with an apparent Km of 1.25 X 10(-5) M for glucose and 5 X 10(-3) M for xylose. Concomitant with the production of solvents, the activities of the glucose and xylose transport systems decreased. Among the main products of fermentation, butanol was shown to be a potent inhibitor of the growth of the organism and of the rate of sugar uptake as well as of sugar incorporation into cell materials. These inhibitory effects of butanol were more pronounced in xylose-grown cells than in glucose-grown cells. Butanol completely inhibited growth at a concentration of 14 g/liter for cultures growing on glucose and 8 g/liter for cultures growing on xylose. Concentrations of 7 and 10.5 g/liter of butanol caused a 50% inhibition of the xylose and glucose incorporations into cell materials. These inhibitory levels of butanol were found in typical glucose or xylose fermentation.  相似文献   

20.
Summary The production of solvent by Clostridium acetobutylicum was studied, using fed-batch fermentations. Different specific rates of carbohydrate utilisation were obtained by variations in feeding rates of sugar. At slow catabolic rates of sugar, addition of acetic acid or butyric acid, alone or together, increased the rate of the metabolic transition by a factor 10 to 20, the amount of solvents by a factor 6 and the percentage of fermented glucose to solvents by a factor 3. The same results were obtained with both glucose and xylose fermentations. Depending on the rates of growth, butanol production began at acid levels of 3–4 g·l-1 for fast metabolism and at acid levels of 8–10 g·l-1 for slow metabolism. Associated with slow metabolism, reassimilation of acids required values as high as 6.5 g·l-1 of acetic acid and 7.5 g·l-1 of butyric acid. At a high rate of metabolism, acetic and butyric acids were reassimilated at concentrations of 4.5 g·l-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号