首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
SUMMARY 1. Biomass and production of picophytoplankton, phytoplankton and heterotrophic bacterioplankton were measured in seven lakes, exhibiting a broad range in water colour because of humic substances. The aim of the study was to identify environmental variables explaining the absolute and relative importance of picophytoplankton. In addition, two dystrophic lakes were fertilised with inorganic phosphorus and nitrogen, to test eventual nutrient limitation of picophytoplankton in these systems.
2. Picophytoplankton biomass and production were highest in lakes with low concentrations of dissolved organic carbon (DOC), and DOC proved the factor explaining most variation in picophytoplankton biomass and production. The relationship between picophytoplankton and lake trophy was negative, most likely because much P was bound in humic complexes. Picophytoplankton biomass decreased after the additions of P and N.
3. Compared with heterotrophic bacterioplankton, picophytoplankton were most successful at the clearwater end of the lake water colour gradient. Phytoplankton dominated over heterotrophic bacteria in the clearwater systems possibly because heterotrophic bacteria in such lakes are dependent on organic carbon produced by phytoplankton.
4. Compared with other phytoplankton, picophytoplankton did best at intermediate DOC concentrations; flagellates dominated in the humic lakes and large autotrophic phytoplankton in the clearwater lakes.
5. Picophytoplankton were not better competitors than large phytoplankton in situations when heterotrophic bacteria had access to a non-algal carbon source. Neither did their small size lead to picophytoplankton dominance over large phytoplankton in the clearwater lakes. Possible reasons include the ability of larger phytoplankton to float or swim to reduce sedimentation losses and to acquire nutrients by phagotrophy.  相似文献   

2.
Composition and seasonal dynamics of phytoplankton, bacteria,and zooplankton (including heterotrophic flagellates, ciliates,rotifers and crustaceans) were studied in 55 lakes in NorthernGermany with different trophic status, ranging from mesotrophicto hypertrophic. Mean abundance and biomass of all groups increasedsignificantly with trophic level of the lake, but bacteria andmetazooplankton showed only a weak correlation and a slightincrease with chlorophyll concentration. Composition of phytoplanktonshowed a dominance of cyanobacteria in hypertrophic lakes, whereasthe importance of chrysophytes and dinophytes decreased withan increase in trophic status. Protozoans (heterotrophic flagellatesand ciliates) made up 24% (mesotrophic lakes) to 42% (hypertrophiclakes) of total zooplankton biomass on average, and were dominatedby ciliates (62–80% of protozoan biomass). Seasonally,protozoans can build up to 60% of zooplankton biomass in spring,when heterotrophic flagellates can contribute  相似文献   

3.
In shallow hypertrophic lakes where light availability restricts the growth of macrophytes and benthic phytoplankton, pelagic phytoplankton modulates importantly ecosystem production and the energy transfer to heterotrophic bacteria. Diel and seasonal variations in primary production (PP) were studied in the hypertrophic Albufera de Valencia (Spain). Additionally, the relationship between PP and heterotrophic bacterial production (BP) was assessed. PP was extremely high, exceeding most values reported for hypertrophic lakes to date. PP displayed marked diurnal variations defined by the solar radiation curve. Likewise, PP changed importantly across seasons. Minimum PP coincided with maximum water transparency and short water residence times in winter, whereas maximum PP was observed in late spring associated with high chlorophyll a. The spring PP maximum contrasted with the summer maximum often observed in hypertrophic lakes. When compared to spring PP values, summer PP values were lower as a result of strong nitrogen limitation. In contrast to PP, BP remained fairly constant across seasons. Nonetheless, there was a joint diminution during increased water transparency followed by an increase in early spring. Phytoplankton was always the most relevant input to particulate carbon production, but the BP/PP ratio showed clear seasonal variations. The BP/PP ratio was minimum in spring, low in summer and highest in winter. The extracellular dissolved organic carbon released by phytoplankton was sufficient to meet bacterial carbon demand in all experimental dates, suggesting that allochthonous carbon sources play a minor role in sustaining BP, though they cannot be excluded. However, we hypothesize that high availability of dissolved organic carbon might explain the lack of coupling observed between BP and PP.  相似文献   

4.
In meromictic Mahoney Lake, British Columbia, Canada, the heterotrophic bacterial production in the mixolimnion exceeded concomitant primary production by a factor of 7. Bacterial growth rates were correlated neither to primary production nor to the amount of chlorophyll a. Both results indicate an uncoupling of bacteria and phytoplankton. In the chemocline of the lake, an extremely dense population of the purple sulfur bacterium Amoebobacter purpureus is present year round. We investigated whether anoxygenic phototrophs are significant for the growth of aerobic bacterioplankton in the overlaying water. Bacterial growth rates in the mixolimnion were limited by inorganic phosphorus or nitrogen most of the time, and the biomass of heterotrophic bacteria did not increase until, in autumn, 86% of the cells of A. purpureus appeared in the mixolimnion because of their reduced buoyant density. The increase in heterotrophic bacterial biomass, soluble phosphorus concentrations below the detection limit, and an extraordinarily high activity of alkaline phosphatase in the mixolimnion indicate a rapid liberation of organically bound phosphorus from A. purpureus cells accompanied by a simultaneous incorporation into heterotrophic bacterioplankton. High concentrations of allochthonously derived dissolved organic carbon (mean, 60 mg of C(middot)liter(sup-1)) were measured in the lake water. In Mahoney Lake, liberation of phosphorus from upwelling purple sulfur bacteria and degradation of allochthonous dissolved organic carbon as an additional carbon source render heterotrophic bacterial production largely independent of the photosynthesis of phytoplankton. A recycling of inorganic nutrients via phototrophic bacteria also appears to be relevant in other lakes with anoxic bottom waters.  相似文献   

5.
The major objective of these studies was to assess the extent of the flow of released dissolved organic carbon (RDOC) from phytoplankton to heterotrophic bacteria. The second aim was to test Nalewajko and Schindler's (1976) hypothesis that the percentage of extracellular release (PER) of RDOC by phytoplankton is higher in oligotrophic than eutrophic waters. The studies on the relationship between the bacterial assimilation of RDOC and productivity of phytoplankton in the lakes of different trophy have shown a direct correlation. It was observed that higher utilization rate of phytoplankton RDOC occurred in lakes with higher primary production. The inverse relationship between productivity of lakes, i.e. trophy of waters, and amount of RDOC or PER is closely dependent on the heterotrophic activity of bacteria in waters.  相似文献   

6.
The molecular size distribution and biochemical composition of the dissolved organic carbon released from natural communities of lake phytoplankton (photosynthetically produced dissolved organic carbon [PDOC]) and subsequently used by heterotrophic bacteria were determined in three lakes differing in trophic status and concentration of humic substances. After incubation of epilimnetic lake water samples with H14CO3- over one diel cycle, the phytoplankton were removed by size-selective filtration. The filtrates, still containing most of the heterotrophic bacteria, were reincubated in darkness (heterotrophic incubation). Differences in the amount and composition of PDO14C between samples collected before the heterotrophic incubation and samples collected afterwards were considered to be a result of bacterial utilization. The PDO14C collected at the start of the heterotrophic incubations always contained both high (>10,000)- and low (<1,000)-molecular-weight (MW) components and sometimes contained intermediate-MW components as well. In general, bacterial turnover rates of the low-MW components were fairly rapid, whereas the high-MW components were utilized slowly or not at all. In the humic lake, the intermediate-MW components accounted for a large proportion of the net PDO14C and were subject to rapid bacterial utilization. This fraction probably consisted almost entirely of polysaccharides of ca. 6,000 MW. Amino acids and peptides, other organic acids, and carbohydrates could all be quantitatively important parts of the low-MW PDO14C that was utilized by the heterotrophic bacteria, but the relative contributions of these fractions differed widely. It was concluded that, generally, low-MW components of PDOC are quantitatively much more important to the bacteria than are high-MW components, that PDOC released from phytoplankton does not contain substances of quantitative importance as bacterial substrates in all situations, and that high-MW components of PDOC probably contribute to the buildup of refractory, high-MW dissolved organic carbon in pelagic environments.  相似文献   

7.
We studied production by three key pelagic energy mobilizer communities, phytoplankton (PP), heterotrophic bacteria (HB), and methanotrophic bacteria (MOB), in five boreal lakes of varying size and concentration of dissolved organic carbon (DOC). Production by PP was responsible for most (>55%) of the total pelagic energy mobilization in all five lakes. Production by HB and PP estimated for the whole water column during the ice-free period were positively correlated, but with the exception of the clearest and most eutrophic lake PP apparently could not support the total carbon demand of bacteria. However, the DOC concentration did not explain the variability of heterotrophic bacterial production (HBP) within or between the lakes. Thus, our results provide circumstantial evidence for the “priming effect” whereby labile organic matter from autochthonous production enhances decomposition of allochthonous DOC. However, HBP was only 10–23% of the total pelagic energy mobilization in the lakes, suggesting that only a minor fraction of allochthonous DOC became available for higher trophic levels. High MOB activity was detected in the water columns of the stratified lakes when the molar ratio of CH4:O2 varied between 0.5 and 12. In the small stratified lakes (area < 0.01 km2), MOB production contributed 13–52% of the total pelagic energy mobilization, being greatest during the autumn mixing period. Our results indicate that in small stratified lakes (area < 0.01 km2) bacteria, especially MOB, are potentially quantitatively important supplementary food resources for zooplankton. However, in larger lakes primary producers are the most important (>70%) potential food source for zooplankton.  相似文献   

8.
Productivity of clear and humic lakes: nutrients,phytoplankton, bacteria   总被引:1,自引:1,他引:0  
Nürnberg  Gertrud K.  Shaw  Margo 《Hydrobiologia》1998,382(1-3):97-112
The relationships between long-term surface average concentrations of humic acids measured as water colour, dissolved organic carbon (DOC) or Secchi disk transparency and trophic state variables were studied with literature data from more than 600 freshwater lakes. The geometric means of summer surface average nutrient (phosphorus and nitrogen) concentration, phytoplankton biomass (chlorophyll concentration), and hypolimnetic anoxia (anoxic factor) were significantly higher in coloured than in clear lakes. The regressions of colour or DOC on these trophic state variables were positive and significant throughout a range of three orders of magnitude. Phytoplankton or primary productivity was higher in coloured lakes, when expressed per volume of epilimnion. Annual integral primary productivity expressed on an areal basis was smaller in coloured lakes, probably a reflection of shallower phototrophic depths in these lakes. There is evidence that annual integral bacteria productivity is much higher in coloured lakes for two reasons: first, epilimnetic bacteria production was ca. four times higher in coloured lakes, second, other studies have shown that hypolimnetic bacteria production is commonly higher than epilimnetic production, especially in anoxic hypolimnia that are frequent in coloured lakes. All volumetrically expressed variables indicated higher productivity in coloured lakes. In addition, high bacteria productivity reflects a different food chain involving mixotrophs, possibly compensating for low light conditions. Our analyses indicate that primary and secondary productivity is as high as or higher than in clear lakes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
酶测定法作为现场测定浮游植物裂解速率的方法已被广泛应用于各种水体环境中。本论文对厦门市筼筜湖的浮游植物裂解速率的时空变化展开调查,探讨了浮游植物裂解速率的时空变化及其影响因素。调查期间,测定了内湖与外湖的溶解性酯酶活性,颗粒态酯酶活性及浮游植物裂解速率,同时测定了水体的叶绿素浓度及其他环境参数。综合分析各种指标,结果显示:浮游植物细胞裂解速率在空间上变化不大,时间上变化较大。在七月份由于水体中的病毒含量较高,浮游植物裂解速率较高。裂解速率在八月份与九月份降低,并且其数值变化不大。  相似文献   

10.
The structure of planktic trophic chains was studied in eight lakes of European Russia and five lakes in Central Asia. The lakes differed in the level of productivity, morphometric parameters, and the type of agitation and mineralization. It is found that the microbial loop of picophototrophic organisms, bacteria, heterotrophic flagellates, infusoria, and viruses constitutes 12.3-64.7% of the total plankton biomass. Positive correlation between the biomass of microbial community and the primary production of phytoplankton is observed, whereas no relation is revealed between the share of microorganisms in the plankton biomass and the trophic status of the water body. The presence of a great number of cladocerans decreased the role of the microbial loop in the structural organization of the planktic community. Heterotrophic flagellates consuming 3-81% of daily bacterial production were the principal cause of bacteria elimination only in some of the studied water bodies.  相似文献   

11.
12.
The number of metabolically active bacteria was measured with nalidixic acid over two annual cycles at three depths in the epilimnion of hypertrophic Hartbeespoort Dam, South Africa. Concurrent measurements were made of water temperature, DOC, phytoplankton production of dissolved (EDOC) and particulate organic carbon, chlorophyll a and the uptake of glucose (Vmax). The objective was to determine the dominant factors correlated to the number of metabolically active bacteria and the relationship between active bacterial numbers and heterotrophic activity.The number of active bacteria was usually highest at the surface and ranged between 0.70 and 6.82 x 106 cells ml–1. The dominant factors correlated to the number of bacteria at the surface were water temperature (r = 0.65, n = 54, p<0.001), primary production (r = 0.53, n = 51, p<0.001) and EDOC (r = 0.37, n = 45, p = 0.005). Surface Vmax for glucose ranged between 0.11 and 4.0 µgC 1–1 h–1 and was positively correlated to the number of active bacteria (r = 0.61, n = 53, p<0.001). The specific activity index (10–12 µgC cell–1 h–1) varied between 80 and 2290 at the surface and was most strongly correlated to EDOC (r = 0.70, n = 48, p<0.001). Relationships between active bacterial numbers, water temperature, phytoplankton activity and glucose uptake were also found at two additional depths within the epilimnion. These data suggest that bacterial populations in nutrient enriched lakes contain a large number of metabolically active cells with high individual activity as a result of enhanced phytoplankton growth.  相似文献   

13.
1. Five oligotrophic clear‐water lakes on the Faroe Islands were studied during August 2000. Algal and bacterial production rates, community respiration, and CO2 saturation were determined. In addition, we examined the plankton community composition (phytoplankton and heterotrophic nanoflagellates) and measured the grazing pressure exerted by common mixotrophic species on bacteria. 2. High respiration to primary production (6.6–33.2) and supersaturation of CO2 (830–2140 μatm) implied that the lakes were net heterotrophic and that the pelagic heterotrophic plankton were subsidised by allochthonous organic carbon. However, in spite of the apparent high level of net heterotrophy, primary production exceeded bacterial production and the food base for higher trophic levels appeared to be mainly autotrophic. 3. We suggest that the observed net heterotrophy in these lakes was a result of the oligotrophic conditions and hence low primary production in combination with an input of allochthonous C with a relatively high availability. 4. Mixotrophic phytoplankton (Cryptomonas spp., Dinobryon spp. and flagellates cf. Ochromonas spp.) constituted a large percentage of the plankton community (17–83%), possibly as a result of their capacity to exploit bacteria as a means of acquiring nutrients in these nutrient poor systems.  相似文献   

14.
A laboratory experiment was performed to test whether differences in nutrient and energy demands between picophytoplankton and heterotrophic bacteria can explain the apparent inverse biomass relationship between these organisms in lakes along gradients of organic carbon and nutrients. Growth rates and final yield of cells were analyzed in crossed gradients of glucose and phosphate. Concentrations of phosphate (10, 25, and 60 microg P L(-1)) and glucose (0, 0.3, and 3 mg C L(-1)) were used in all possible combinations giving 9 different treatments. Heterotrophic bacteria had higher maximum growth rates in all treatments and became larger than picophytoplankton in many treatments. The variance in abundance of heterotrophic bacteria between treatments could almost completely be explained by the combined effects of glucose and P. In treatments where carbon limitation slowed down the growth of heterotrophic bacteria, picophytoplankton became abundant and these organisms showed a positive response to P in combination with a negative response to glucose. The negative effect of glucose on picophytoplankton is suggested to be indirect and caused by competition with bacteria that are favored by organic C. The results suggest that competition for phosphate between phytoplankton and bacteria is not size-dependent, that heterotrophic bacteria are superior competitors for P, and that organic C produced by picophytoplankton was of minor importance for heterotrophic bacteria.  相似文献   

15.
The primary production and extracellular release by phytoplankton were measured at different depths of Miko?ajskie Lake, Ryńskie Lake and Be?dany Lake (Masurian Lake District, Poland). The release of dissolved organic compounds was found to be related to the rates of primary production. The percentage of extracellular release (PER) of organic matter in the photic zone showed an inverse relationship with particulate production and chlorophyll alpha concentration. The highest PER was determined in the epilimnion of the studied lakes, where also increased release was observed. The higher release of algal products of photosynthesis in the photic zone than in the profundal is probably caused by the inhibition of physiological activity of bacteria by antibacterial substances produced by algae. The substances released by algae in the profundal are taken up by aquatic bacteria which explains the lower release and PER measured.  相似文献   

16.
Photosynthetic oxygen production by phytoplankton and community respiration in the Indian sector of the Antarctic Ocean were estimated from changes in oxygen concentrations in light and dark bottles. Gross production varied between 0.1 and 5.1 µmol O2 l-1 day-1. In the same water, community respiration (the sum of oxygen consumption by heterotrophs and phytoplankton) was 0.4-3.6 µmol O2 l-1 day-1, which accounted for 47-343% of the gross production. Algal and heterotrophic respirations were distinguished using some assumptions. These estimates showed that heterotrophic respiration accounted for most of the community respiration (70-91% depending upon the assumptions), indicating that heterotrophic respiration plays an important role in the mineralization of phytoplankton production in the surveyed sea area. Gross production rate correlated with chlorophyll a concentration, showing that the photosynthetic production rate of oxygen depends on the abundance of phytoplankton. Moreover, there was a significant relationship between gross production and community respiration rates. These regression equations suggested that negative net production occurred under the usually low concentration of chlorophyll observed in the Indian sector of the Antarctic Ocean. Hence, the net exchange of carbon dioxide due to biological processes through the sea surface seemed to be not as large as expected in the Antarctic Ocean, although the number of data were limited at this stage.  相似文献   

17.
The quantitative importance of photosynthetically produced dissolved organic carbon (PDOC) released from phytoplankton as a source of carbon for pelagic, heterotrophic bacteria was investigated in four temperate Swedish lakes, of which two had low (≈20 mg Pt 1−1), and two moderately high (60–80 mg Pt 1−1) humic content. The bacterial assimilation of PDOC was estimated with the 14C method, and the total production of the heterotrophic bacteria was estimated with the [3H]thymidine incorporation method. The release of PDOC from natural communities of phytoplankton was not restricted to periods of photosynthesis, but often continued during periods of darkness. Heterotrophic bacteria often assimilated the labile components of the PDOC at high rates (up to 73% of the released PDOC was assimilated during the incubation in our experiments). The contribution of PDOC to bacterial production exhibited large within-lake seasonal variations, but PDOC was at certain times, both in humic and non-humic lakes, a quantitatively very important carbon source for the heterotrophic bacteria. Under periods of comparatively low primary production, heterotrophic bacteria in humic lakes appear to utilize allochthonous, humic substances as a substrate.  相似文献   

18.
Bacterial utilization of photosynthetically fixed dissolved organic carbon (PDOC) released from natural phytoplankton assemblages was studied in two small, extremely humic, forest lakes in southern Finland. Bacterial activity (measured as uptake of 14C-glucose) and phytoplankton photosynthesis (measured as light uptake of 14CO2) could be most effectively separated using Nuclepore filters of pore size 1–2 μm. Released PDOC was 10–67% of total phytoplankton carbon fixation during in situ experiments, and represented about 0.1% of total DOC. Net uptake of PDOC by bacteria was found to be about 20% during 24 hour laboratory incubations, although about 40% of PDOC present at the start of an experiment could be utilized by bacteria during a 24 hour period. PDOC does not provide a quantitatively important substrate supply for bacterial respiration in humic forest lakes.  相似文献   

19.
A study aimed at investigating the temporal variation of phytoplankton assemblages in Lake Nyamusingiri was carried out during the period of December 1997–May 1998. Uganda’s freshwaters are ecologically diverse but a few are intensively studied. Research on phytoplankton has been restricted to large water bodies. There is little information on phytoplankton of the western Uganda crater lakes, which are important water and biodiversity resources. This study provided baseline data on phytoplankton, which will serve as a basis for monitoring the effects of human activities on the lake that might result in ecological transformations like loss of biodiversity because of overexploitation. A laboratory thermometer and Winker’s method were used to determine temperature and dissolved oxygen concentration, respectively. Lake transparency was measured by using the Secchi disc. A Van Dorn sampler was used to collect water samples. Nutrient and chlorophyll a concentrations were determined by using facilities at the Fisheries Resources Research Institute (FIRRI), Jinja. The Sedgwick‐Rafter counting chamber was used to analyse phytoplankton. Variation in temperature was small (25.4–26.2°C). Stable thermal stratification was not evident. The Secchi disc transparency was less than unity. The chlorophyll a value was high. Biomass was found to be light‐limited by nonalgal materials. Dissolved oxygen concentration was more than 100% in the surface waters but declined to <20% at the bottom, which reflected the eutrophic nature of the lake. Diversity indices were low. Eighteen species and five classes of phytoplankton were revealed by this study. The phytoplankton flora was dominated by chlorococcal green algae characteristic of the large eutrophic East African lakes.  相似文献   

20.
1. Neutral community models are derived from the proposition that basic probabilities of species loss (extinction, emigration) and gain (immigration, speciation) explain biological community structure, such that species with many individuals are very likely to be widespread. Niche models on the other hand assume that interactions between species and differential resource use mediate species coexistence, thus invoking environmental factors to explain community patterns. 2. In this study, we compared neutral and niche models to test how much of the spatial variability of assemblages of heterotrophic bacteria and phytoplankton in 13 lakes they could explain. Analysis of phytoplankton was restricted to cyanobacteria, so that they could be studied with the same molecular fingerprinting method, automated ribosomal intergenic spaces analysis (ARISA), as heterotrophic bacteria. We determined local biotic and abiotic lake variables as well as lake age, glacial history and distance between sites. 3. The neutral community model had a good fit to the community composition of heterotrophic bacteria (R2 = 0.69), whereas it could not produce a significant model for the community composition of cyanobacteria. 4. The community composition of cyanobacteria was instead correlated to environmental variables. The best model, a combination of total organic carbon, biomass of eukaryotic phytoplankton, pH and conductivity, could explain 8% of the variation. In contrast, variation in the community composition of heterotrophic bacteria was not predicted by any of the environmental variables. Historical and spatial variables were not correlated to the community composition of either group. 5. The pattern found for heterotrophic bacteria suggests that stochastic processes are important. The correlation of cyanobacteria with local environmental variables alone is consistent with the niche model. We suggest that cyanobacteria, a group of organisms containing bloom‐forming species, may be less likely to fit a neutral community model, since these blooms are usually triggered by a particular combination of environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号