首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn–canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn–canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.  相似文献   

2.
Diets supplemented with high levels of saturated fatty acids derived from sheep kidney (perirenal) fat or unsaturated fatty acids derived from sunflower seed oil were fed to rats and the effect on heart mitochondrial lipid composition and membrane-associated enzyme behaviour was determined. The dietary lipid treatments did not change the overall level of membrane lipid unsaturation but did alter the proportion of various unsaturated fatty acids. This led to a change in the omega 6/omega 3 unsaturated fatty acid ratio, which was highest in the sunflower seed oil fed rats. Arrhenius plots of the mitochondrial membrane associated enzymes succinate-cytochrome c reductase and oligomycin-sensitive adenosinetriphosphatase (ATPase) after dietary lipid treatment revealed different responses in their critical temperature. For succinate-cytochrome c reductase, the critical temperature was 29 degrees C for rats fed the sheep kidney fat diet and 20 degrees C for rats fed the sunflower seed oil diet. In contrast, no shift in the critical temperature for the mitochondrial ATPase was apparent as a result of the differing dietary lipid treatments. The results suggest that the discontinuity in the Arrhenius plot of succinate-cytochrome c reductase is induced by some change in the physical properties of the membrane lipids. In contrast, mitochondrial ATPase appears insensitive, in terms of its thermal behaviour, to changes occurring in the composition of the membrane lipids. However, the specific activity of the mitochondrial ATPase was affected by the dietary lipid treatment being highest for the rats fed the sheep kidney fat diet. No dietary lipid effect was observed for the specific activity of succinate-cytochrome c reductase. This differential response of the two mitochondrial membrane enzymes to dietary-induced changes in membrane lipid composition may affect mitochondrial oxidative phosphorylation.  相似文献   

3.
Diets supplemented with relatively high levels of either saturated fatty acids derived from sheep kidney fat (sheep kidney fat diet) or unsaturated fatty acids derived from sunflower seed oil (sunflower seed oil diet) were fed to rats for a period of 16 weeks and changes in the thermotropic behaviour of liver and heart mitochondrial lipids were determined by differential scanning calorimetry (DSC). The diets induced similar changes in the fatty acid composition in both liver and heart mitochondrial lipids, the major change being the omega 6 to omega 3 unsaturated fatty acid ratio, which was elevated in mitochondria from animals on the sunflower seed oil diet and lowered with the mitochondria from the sheep kidney fat dietary animals. When examined by DSC, aqueous buffer dispersions of liver and heart mitochondrial lipids exhibited two independent, reversible phase transitions and in some instances a third highly unstable transition. The dietary lipid treatments had their major effect of the temperature at which the lower phase transition occurred, there being an inverse relationship between the transition temperature and the omega 6 to omega 3 unsaturated fatty acid ratio. No significant effect was observed for the temperature of the higher phase transition. These results indicate that certain domains of mitochondrial lipids, probably containing some relatively higher melting-point lipids, independently undergo formation of the solidus or gel phase and this phenomenon is not greatly influenced by the lipid composition of the mitochondrial membranes. Conversely, other domains, representing the bulk of the membrane lipids and which probably contain the relatively lower melting point lipids, undergo solidus phase formation at temperatures which reflect changes in the membrane lipid composition which are in turn, a reflection of the nature of the dietary lipid intake. These lipid phase transitions do not appear to correlate directly with those events considered responsible for the altered Arrhenius kinetics of various mitochondrial membrane-associated enzymes.  相似文献   

4.
The effects of different dietary fat intake on the lipid composition and enzyme behaviour of sarcolemmal (Na+ + K+)ATPase and sarcoplasmic reticulum Ca2+-ATPase from rat heart were investigated. Rat diets were supplemented with either sunflower seed oil (unsatd./satd. 5.6) or sheep kidney fat (unsatd./satd. 0.8). Significant changes in the phospholipid fatty acid composition were observed in both membranes after 9 weeks dietary lipid treatment. For both membranes, the total saturated/unsaturated fatty acid levels were unaffected by the dietary lipid treatment, however the proportions of the major unsaturated fatty acids were altered. Animals fed the sunflower seed oil diet exhibited an increase in n-6 fatty acids, including linoleic (18:2(n-6] and arachidonic (20:4(n-6] while the sheep kidney fat dietary rats were higher in n-3 fatty acids, principally docosahexaenoic (22:6), with the net result being a higher n-6/n-3 ratio in the sunflower seed oil group compared to sheep kidney fat dietary animals. Fluorescence polarization indicated that the fluidity of sarcoplasmic reticular membrane was greater than that of sarcolemmal membrane, with a dietary lipid-induced decrease in fluidity being observed in the sarcoplasmic reticular membrane from sheep kidney fat dietary animals. Despite these significant changes in membrane composition and physical properties, neither the specific activity nor the temperature-activity relationship (Arrhenius profile) of the associated ATPases were altered. These results suggest that with regard to the parameters measured in this study, the two ion-transporting ATPases are not modulated by changes which occur in the membrane lipid composition as a result of the diet.  相似文献   

5.
A longitudinal cross-over feeding design was used to investigate the relationship of dietary lipid composition to the membrane lipid environment and activity of mitochondrial ATPase in vivo. Rats were fed a polyunsaturated fatty-acid-rich oil (soya-bean oil) for 12 days, crossed-over to a monounsaturated fatty-acid-rich oil (rapeseed oil) for the next 11 days, then returned to soya-bean oil for 11 more days. Additional rats were fed either soya-bean oil or rapeseed oil throughout. Rats fed rapeseed oil had lower rates of ATPase-catalysed ATP/[32P]Pi exchange than rats fed soya-bean oil. Arrhenius plots showed higher transition temperature (Tt) and activation energy (Ea) for rats fed rapeseed oil. Switching from soya-bean oil to rapeseed oil was dynamically followed by changes in the thermotropic and kinetic properties of the mitochondrial ATPase exchange reaction. Returning to soya-bean oil reversed these changes. The rapid and reversible modulation of Tt caused by a change of the type of fat ingested suggests that membrane physicochemical properties are not under rigid intrinsic control but are continually modified by the profile of exogenously derived fatty acids. The studies suggest that in vivo the activity of mitochondrial ATPase is in part determined by dietary lipid via its influence on the microenvironment of the enzyme. The rapidity and ready reversibility of changes observed for this subcellular-membrane-bound enzyme suggest that dietary fatty-acid balance may be an important determinant of other membrane functions in the body.  相似文献   

6.
The radiation response of Bp8 sarcoma ascites tumour cells with differences in membrane fatty acid composition was studied. The cells were grown i.p. in NMRI mice and their membrane composition was changed in response to different dietary regimes provided to the host animals. Three diets that differed only with regard to the source of fatty acids, i.e. sunflower seed oil, coconut oil, hydrogenated lard and a fourth commercially available standard laboratory diet, were given to the mice for different lengths of time, before implantation of the tumour cells. The time course for the dietary regimes to induce different levels of changes in membrane fatty acid composition of the ascites cells was established. The evaluation of the radiosensitivity of cells with different membrane fatty acid composition was done in vitro. Cell survival, expressed by D0, varied only insignificantly between the four dietary groups, while their repair capacity (Dq and n) differed significantly. Increased repair capacity was observed for ascites cells grown in animals on diets enriched in sunflower seed oil and coconut oil, compared with cells from mice fed the hydrogenated lard diet or from cells from the control animals. The membrane fatty acid composition of the cells from the two dietary groups with increased levels of repair capacity differed extensively, and in general there was no correlation observed between radiation response and the membrane fatty acid composition of the four dietary groups studied. For two of the dietary groups, coconut oil and control, with marked differences in membrane fatty acid composition, the effects of irradiation on ascites tumour growth rate and cell cycle distribution were followed in vivo. For none of these parameters was an effect of membrane fatty acid composition on radiation response observed.  相似文献   

7.
Weanling rats were fed semi-purified diets containing 15% by weight of either corn oil, a high oleic acid safflower oil, lard or hydrogenated soybean oil. Significant changes in the fatty acid composition of erythrocytes were induced by these dietary fats. The compositional changes did not effect water diffusional permeability, but did affect their osmotic fragility. An increased fragility appeared to be associated with an increased octadecenoate content of the membranes.  相似文献   

8.
A synthetic diet preparation supplemented with 10% by weight of either safflower oil, hydrogenated coconut oil containing 3% safflower oil, or 'max EPA' fish oil was fed to rats over a 8-week period. Serial measurements of serum fatty acids, serum thromboxane B2 and urinary prostaglandin excretion were taken during the treatment period to assess the rate of change in fatty acid composition and prostaglandin synthesis following dietary manipulation. There was no significant change in weight gain between the dietary groups during the treatment period. Significant changes in serum fatty acids occurred within 48 h of treatment, with the 'max EPA' oil group having arachidonic acid levels reduced by 23% (P less than 0.01) compared to the coconut oil group. Conversely, rats fed safflower oil had an 18% enhancement of arachidonic acid during the same time period. Whole blood synthesis of thromboxane B2 was significantly depressed (P less than 0.01) after 48 h in rats fed 'max EPA' oil compared to the safflower oil or coconut oil groups. This suppression reached a maximum of 65% (P less than 0.001) after 7 days of dietary 'max EPA' oil treatment. The safflower oil and coconut oil-fed groups showed the same levels of serum thromboxane B2 production over the treatment period. Urinary excretion of both 6-ketoprostaglandin F1 alpha and prostaglandin E2 varied significantly (P less than 0.01) between the groups after 7 days of dietary treatment. Rats fed 'max EPA' oil had depressed urinary prostanoid excretion compared to the safflower and coconut oil groups which remained very similar to each other. After the 8-week treatment period rats were killed and the phospholipid fatty acid composition and prostaglandin-generating capacity of platelets, aorta and renal tissue was examined. Prostanoid production by kidney cortex and medulla and segments of aorta was consistently suppressed in rats fed 'max EPA' oil. These observations correlated well with changes in the phospholipid fatty acid profiles in these tissues. This study shows rapid changes in serum fatty acids and thromboxane B2 generation following dietary manipulation, while changes in urinary excretion or prostanoid metabolites occur only after a longer time period.  相似文献   

9.
The activity and mRNA level of hepatic enzymes in fatty acid oxidation and synthesis were compared in rats fed diets containing either 15% saturated fat (palm oil), safflower oil rich in linoleic acid, perilla oil rich in α-linolenic acid or fish oil rich in eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) for 15 days. The mitochondrial fatty acid oxidation rate was 50% higher in rats fed perilla and fish oils than in the other groups. Perilla and fish oils compared to palm and safflower oils approximately doubled and more than tripled, respectively, peroxisomal fatty acid oxidation rate. Compared to palm and safflower oil, both perilla and fish oils caused a 50% increase in carnitine palmitoyltransferase I activity. Dietary fats rich in n-3 fatty acids also increased the activity of other fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. The extent of the increase was greater with fish oil than with perilla oil. Interestingly, both perilla and fish oils decreased the activity of 3-hydroxyacyl-CoA dehydrogenase measured using short- and medium-chain substrates. Compared to palm and safflower oils, perilla and fish oils increased the mRNA level of many mitochondrial and peroxisomal enzymes. Increases were generally greater with fish oil than with perilla oil. Fatty acid synthase, glucose-6-phosphate dehydrogenase, and pyruvate kinase activity and mRNA level were higher in rats fed palm oil than in the other groups. Among rats fed polyunsaturated fats, activities and mRNA levels of these enzymes were lower in rats fed fish oil than in the animals fed perilla and safflower oils. The values were comparable between the latter two groups. Safflower and fish oils but not perilla oil, compared to palm oil, also decreased malic enzyme activity and mRNA level. Examination of the fatty acid composition of hepatic phospholipid indicated that dietary α-linolenic acid is effectively desaturated and elongated to form EPA and DHA. Dietary perilla oil and fish oil therefore exert similar physiological activity in modulating hepatic fatty acid oxidation, but these dietary fats considerably differ in affecting fatty acid synthesis.  相似文献   

10.
We investigated the effect of modifying fatty acid modification of heart mitochondrial membranes by dietary intervention on the functions and thermal sensitivity of electron transport system complexes embedded in the inner mitochondrial membrane. Four groups of rats were fed diets differing in their fat (coconut, olive or fish oil) and antioxidant (fish oil with or without probucol) contents. After 16 weeks of feeding, the coconut and olive oil groups had lower long-chain n-3 polyunsaturated fatty acids contents and a lower unsaturation index compared to both fish oil groups. These differences in fatty acid composition were not related to any differences in the mitochondrial respiration rate induced at Complexes I, II or IV, or to differences in their thermal sensitivity. The coconut oil group showed a lower mitochondrial affinity for pyruvate at 5 degrees C (k(mapp)=6.4+/-1.8) compared to any other groups (k(mapp)=3.8+/-0.5; 4.7+/-0.8; 3.6+/-1.1, for olive, fish oil and fish oil and probucol groups, respectively). At least in rat heart, our results do not support a major impact of the fatty acid composition of the mitochondrial membrane on the function of mitochondrial enzymatic complexes or on their temperature sensitivity.  相似文献   

11.
Diets supplemented with high levels of saturated or unsaturated fatty acids supplied by addition of sheep kidney fat or sunflower seed oil, respectively, were fed to rats with or without dietary cholesterol. The effects of these diets on cardiac membrane lipid composition, catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor activity associated with cardiac membranes, were determined. The fatty acid-supplemented diets, either with or without cholesterol, resulted in alterations in the proportion of the (n-6) to (n-3) series of unsaturated fatty acids, with the sunflower seed oil increasing and the sheep kidney fat decreasing this ratio, but did not by themselves significantly alter the ratio of saturated to unsaturated fatty acids. However, cholesterol supplementation resulted in a decrease in the proportion of saturated and polyunsaturated fatty acids and a dramatic increase in oleic acid in cardiac membrane phospholipids irrespective of the nature of the dietary fatty acid supplement. The cholesterol/phospholipid ratio of cardiac membrane lipids was also markedly increased with dietary cholesterol supplementation. Although relatively unaffected by the nature of the dietary fatty acid supplement, catecholamine-stimulated adenylate cyclase activity was significantly increased with dietary cholesterol supplementation and was positively correlated with the value of the membrane cholesterol/phospholipid ratio. Although the dissociation constant for the beta-adrenergic receptor, determined by [125I](-)-iodocyanopindolol binding, was unaffected by the nature of the dietary lipid supplement, the number of beta-adrenergic receptors was dramatically reduced by dietary cholesterol and negatively correlated with the value of the membrane cholesterol/phospholipid ratio. These results indicate that the activity of the membrane-associated beta-adrenergic/adenylate cyclase system of the heart can be influenced by dietary lipids particularly those altering the membrane cholesterol/phospholipid ratio and presumably membrane physico-chemical properties. In the face of these dietary-induced changes, a degree of homeostasis was apparent both with regard to membrane fatty acid composition in response to an altered membrane cholesterol/phospholipid ratio, and to down regulation of the beta-adrenergic receptor in response to enhanced catecholamine-stimulated adenylate cyclase activity.  相似文献   

12.
13.
No data are reported on changes in mitochondrial membrane phospholipids in non-alcoholic fatty liver disease. We determined the content of mitochondrial membrane phospholipids from rats with non alcoholic liver steatosis, with a particular attention for cardiolipin (CL) content and its fatty acid composition, and their relation with the activity of the mitochondrial respiratory chain complexes. Different dietary fatty acid patterns leading to steatosis were explored. With high-fat diet, moderate macrosteatosis was observed and the liver mitochondrial phospholipid class distribution and CL fatty acids composition were modified. Indeed, both CL content and its C18:2n-6 content were increased with liver steatosis. Moreover, mitochondrial ATP synthase activity was positively correlated to the total CL content in liver phospholipid and to CL C18:2n-6 content while other complexes activity were negatively correlated to total CL content and/or CL C18:2n-6 content of liver mitochondria. The lard-rich diet increased liver CL synthase gene expression while the fish oil-rich diet increased the (n-3) polyunsaturated fatty acids content in CL. Thus, the diet may be a significant determinant of both the phospholipid class content and the fatty acid composition of liver mitochondrial membrane, and the activities of some of the respiratory chain complex enzymes may be influenced by dietary lipid amount in particular via modification of the CL content and fatty acid composition in phospholipid.  相似文献   

14.
Rats were fed diets that differed in fatty acid composition or in the proportion of energy derived from fat to determine if alteration of dietary fat intake influences the structural lipid composition of liver plasma membrane and the expression of an associated hormone-receptor-mediated function. Weanling rats were fed 9% (w/w) or 20% (w/w) low-erucic acid rape-seed oil or 9% (w/w) soya-bean oil for 24 days. Plasma membranes were isolated and the effect of diet fat on the fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingomyelin was determined. Diet fat significantly altered total saturated and (omega-9) and (omega-6)-unsaturated fatty acid composition in addition to the (omega-6)- to (omega-3)-unsaturated fatty acid ratio in these polar lipids. Feeding the high-fat diet increased the (omega-6)- to (omega-3)-unsaturated fatty acid ratio and the (omega-9)-unsaturated fatty acid content in all lipids except sphingomyelin. Assay of glucagon-stimulated adenylate cyclase activity at both high and low glucagon concentrations indicated that high-fat intake also decreased cyclic AMP formation. In a second experiment the fat intake was held constant (40% of energy) and oleic acid was substituted for linoleic acid by blending high- and low-linoleic acid-type safflower oils. This experiment established that a dose-response relationship exists between dietary intake of fatty acid and the fatty acid composition of plasma-membrane phospholipids. Specific diet-induced transitions in membrane phospholipid fatty acid composition were paralleled by changes in glucagon-stimulated adenylate cyclase activity. This study suggests that transitions in dietary fat intake can alter a hormone-receptor-mediated enzyme function in vivo by changing the surrounding lipid environment.  相似文献   

15.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

16.
Sudden Cardiac Death resulting from sustained ventricular fibrillation or malignant cardiac arrhythmia has been linked to the type of dietary fat intake in several economically well developed countries where high levels of saturated fatty acids are common. Experimental studies with the small non-human primate marmoset monkey have clearly demonstrated the health benefit of substituting polyunsaturated fatty acids (PUFA's) for dietary saturated fatty acids. Heart rate and blood pressure are lowered, while the left ventricular ejection fraction and the electrical threshold for the induction of ventricular fibrillation are both increased after prolonged feeding of PUFA enriched diets. All these changes in heart function reduce the risk of developing malignant cardiac arrhythmias.The fatty acid composition of cardiac membrane phospholipids is profoundly altered by these changes in dietary lipid intake. In particular the proportions of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexae noic acid (DHA) are altered in such a way that the production of myocardial eicosanoids is affected. Although the changes in proportion of these long-chain PUFA's in cardiac phosphatidyl ethanolamine and phosphatidyl inositol are not identical, the shift in balance between these substrates or inhibitors of cyclo-oxygenase activity leads to relatively greater production of prostacyclin (PGI2) than thromboxane (TXA2).The effect of the omega-3 PUFA's of fish oil is proportionally greater than that of linoleic acid (LA; 18:2, 6) rich sunflower seed oil, particularly during ischaemia, and probably reflects the different nutritionally induced changes in cardiac membrane fatty acid composition by these different types of dietary PUFA's. (Mol Cell Biochem 116: 19–25, 1992).  相似文献   

17.
Because diabetes causes alterations in hepatic membrane fatty acid content, these changes may affect the Na+,K+-ATPase. In this study we documented the effects of streptozotocin (STZ)-induced diabetes on hepatic Na+,K+-ATPase catalytic alpha1-subunit and evaluated whether these changes could be normalized by fish oil supplementation. Two groups of diabetic rats received fish oil or olive oil supplementation. Both groups had a respective control group. We studied the localization of catalytic alpha1-subunit on bile canalicular and basolateral membranes using immunocytochemical methods and confocal laser scanning microscopy, and the Na+, K+-ATPase activity, membrane fluidity, and fatty acid composition on isolated hepatic membranes. A decrease in the alpha1-subunit was observed with diabetes in the bile canalicular membranes, without changes in basolateral membranes. This decrease was partially prevented by dietary fish oil. Diabetes induces significant changes as documented by enzymatic Na+,K+-ATPase activity, membrane fluidity, and fatty acid content, whereas little change in these parameters was observed after a fish oil diet. In conclusion, STZ-induced diabetes appears to modify bile canalicular membrane integrity and dietary fish oil partly prevents the diabetes-induced alterations.  相似文献   

18.
The modulation of rat brain microsomal and synaptosomal membrane lipid by diet fat was examined. Brain synaptosomal and microsomal membrane composition was compared for rats fed on diets containing either soya-bean oil (SBO), SBO plus choline, SBO lecithin, sunflower oil (SFO), chow or low-erucic acid rape-seed oil (LER) for 24 days. Cholesterol and phosphatidylcholine levels in both membranes were altered by diet. Diet fat also affected the microsomal content of sphingomyelin. Change in membrane phosphatidylcholine level was related to the relative balance of omega-6, omega-3 and monounsaturated fatty acids within the diets fed. The highest phosphatidylcholine levels appeared in membranes of animals fed on SBO lecithin and the lowest in those fed on LER. Microsomal membrane cholesterol and sphingomyelin content increased by feeding on SBO lecithin. In both synaptosomal and microsomal membranes a highly significant correlation was observed between membrane phosphatidylcholine and cholesterol content. The fatty acyl composition of phospholipids from both membranes also altered with diet and age. Alteration in fatty acid composition was observed in response to dietary levels of omega-6, omega-3 and monounsaturated fatty acids, but the unsaturation index of each phospholipid remained constant for all diet treatments. These changes in lipid composition suggest that dietary fat may be a significant modulator in vivo of the physicobiochemical properties of brain synaptosomal and microsomal membranes.  相似文献   

19.
20.
  • 1.1. Weanling rats were fed diets differing in fatty acid composition to determine if changes induced in cardiac mitochondrial membrane structural components alter the sensitivity of mitochondrial ATPase to inhibition by oligomycin and stimulation by 2,4-dinitrophenol.
  • 2.2. Mitochondrial ATPase assayed in situ within the mitochondrial membrane isolated from animals fed diets higher in fatty acids of longer chain length, exhibited greater oligomycin sensitivity and lower 2,4-dinitrophenol-induced stimulation.
  • 3.3. Concomitant diet-induced changes occur in the fatty acid, composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin, increasing overall length of fatty-acyl tails in the membrane phospholipids.
  • 4.4. Diet fat mediated alterations in oligomycin sensitivity of mitochondrial ATPase and membrane fatty acid chain length suggest that vivo changes in thickness of the lipid bilayer may alter mitochindrial ATPase functions.
  • 5.5. The present study extends the concept that dietary fat affects mitochondrial membrane structure and function by demonstrating that the membrane-dependent sensitivity of mitochondrial ATPase to inhibitors and stimulators may be modulated by dietary fat.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号