首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used molecular techniques to examine 11 species of frogs in 6 localities in southern Chile to ascertain the incidence of the chytrid fungus Batrachochytrium dendrobatidis (Bd). We detected the fungus in 2 localities (Co?aripe and Raúl Marín Balmaceda) in 3 species: Batrachyla leptopus, Pleurodema thaul and Rhinoderma darwinii. Our findings expand the list of Bd hosts to include B. leptopus and P. thaul and extend the spatial distribution in Chile to include the southernmost Bd record at Raúl Marín Balmaceda.  相似文献   

2.
Although histopathology is used routinely for diagnosis of chytridiomycosis in live and dead amphibians, there are no quantitative data on the distribution of the causative fungus, Batrachochytrium dendrobatidis, in the skin. We performed quantitative histological examinations on 6 sites on the body and 4 toes of 10 free-ranging adult green tree frogs Litoria caerulea found recently dead or dying from chytridiomycosis. Large numbers of sporangia occurred in all areas of ventral skin and toes; on average there were 94.3 sporangia mm(-1) of superficial epidermis. The number of sporangia was highly variable and this appeared to be related to the stage in the cycle of sloughing. The stratum corneum tends to build up with high intensities of infection and then sheds entirely rather than being shed continuously. Very few or no sporangia occurred on dorsal skin. This distribution could be explained by the dryness of the dorsal skin or possibly by the greater number of serous glands, which produce antifungal peptides, on the dorsum. In some frogs, ulceration and erosions occurred on skin on the back in the absence of sporangia. Other pathological changes such as hyperkeratosis and congestion occurred much more frequently on ventral surfaces.  相似文献   

3.
Aim Amphibian chytridiomycosis, an emerging infectious disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), is associated with global amphibian population declines and species extinctions. Current evidence indicates that the pathogen has recently spread globally from an enzootic focus, with Xenopus spp. (family Pipidae) in South Africa having been identified as a likely source. The aim of this study was to investigate further the likelihood of African Xenopus spp. as the original source of Bd. Location We examined 665 museum specimens of 20 species of African and South American pipid frogs collected between 1844 and 1994 and held in the collection of the Natural History Museum, London. Methods Skin brushings taken from adult amphibians and brushings from the mouthparts, lips and developing hind limbs of larval pipid frogs were examined for the presence of Bd using real‐time PCR. Results We found six cases of Bd infection in three Xenopus spp. (from Africa), but none of the South American pipids was positive, although only 45 South American frogs were available for examination. The earliest case of Bd infection was in a specimen of Xenopus fraseri collected from Cameroon in 1933. A consistently low prevalence of infection over time indicates that a historical equilibrium existed between Xenopus spp. and Bd infection in Africa. Main conclusions Our results suggest that Bd infection was present in Xenopus spp. across sub‐Saharan Africa by the 1930s, providing additional support for the ‘out of Africa’ hypothesis. If this hypothesis is correct, it strengthens the argument for stringent control of human‐assisted movements of amphibians and other wildlife world‐wide to minimize the likelihood of pathogen introduction and disease emergence that can threaten species globally. Our findings help inform species selection for conservation in the face of the current Bd pandemic and also guide future research directions for selecting Bd isolates for sequencing and virulence testing.  相似文献   

4.
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines worldwide. In vitro laboratory studies and those done on wild populations indicate that Bd grows best at cool temperatures between 17 and 25 degrees C. In the present study, we tested whether moderately elevating the ambient temperature to 30 degrees C could be an effective treatment for frogs infected with Bd. We acquired 35 bullfrogs Rana catesbeiana from breeding facilities and 36 northern cricket frogs Acris crepitans from the wild and acclimated them to either 23 or 26 degrees C for 1 mo. Following the acclimation period, frogs were tested for the presence of Bd using qPCR TaqMan assays. The 12 R. catesbeiana and 16 A. crepitans that tested positive for Bd were subjected to 30 degrees C for 10 consecutive days before returning frogs to their starting temperatures. Post-treatment testing revealed that 27 of the 28 frogs that had tested positive were no longer infected with Bd; only a single A. crepitans remained infected following treatment. This result indicates that elevating ambient temperature to a moderate 30 degrees C can be effective as a treatment for Bd infection in captive amphibians, and suggests that heat may be a superior alternative to antifungal drugs.  相似文献   

5.
Batrachochytrium dendrobatidis (Bd), a disease-causing amphibian-specific fungus, is widely distributed in Puerto Rico, but is restricted to elevations above 600 m. The effect of this pathogen in the wild was studied by monitoring Eleutherodactylus coqui and E. portoricensis in 2 upland forests at El Yunque, a site characterized by historic population declines in the presence of chytridiomycosis. We tested a potential synergistic interaction between climate and Bd by measuring prevalence of infection and level of infection per individual sampled (number of zoospores), across the dry and wet seasons for 2 yr (between 2005 and 2007). Infection levels in adult frogs were significantly higher during the dry season in both species studied, suggesting a cyclic pattern of dry/ cool-wet/warm climate-driven synergistic interaction. These results are consistent with ex situ experiments in which E. coqui infected with Bd were more susceptible to chytridiomycosis when subjected to limited water treatments resembling drought. Long-term data on the prevalence of Bd in the populations studied versus intensity of infection in individual frogs provided contradictory information. However, the conflicting nature of these data was essential to understand the status of Bd in the species and geographical area studied. We conclude that in Puerto Rico, Bd is enzootic, and vulnerability of eleutherodactylid frogs to this pathogen is related to seasonal climatic variables. Our data suggest a mechanism by which this disease can persist in tropical frog communities without decimation of its hosts, but that complex interactions during severe droughts may lead to population crashes.  相似文献   

6.
Polyclonal antibodies were produced for diagnosing chytridiomycosis in amphibians. Two sheep and 4 rabbits were inoculated with homogenized whole culture of Batrachochytrium dendrobatidis in Freund's complete adjuvant or triple adjuvant. Antisera from all animals reacted strongly with all stages of B. dendrobatidis and stained the walls, cytoplasm, rhizoids and zoospores in an indirect immunoperoxidase test. Significant cross-reactivity occurred only with some fungi in the Chytridiomycota, and there are no members of this phylum besides B. dendrobatidis that infect frogs. The immunoperoxidase stain is a useful screening test when combined with recognition of the morphology and infection site of B. dendrobatidis.  相似文献   

7.
The disappearance of amphibian populations from seemingly pristine upland areas worldwide has become a major focus of conservation efforts in the last two decades, and a parasitic chytrid fungus, Batrachochytrium dendrobatidis, is thought to be the causative agent of the population declines. We examined the altitudinal distribution of chytrid infections in three stream‐dwelling frog species (Litoria wilcoxii, L. pearsoniana and L. chloris) in southeast Queensland, Australia, and hypothesized that if B. dendrobatidis were responsible for the disappearance of high‐altitude frog populations, infection prevalence and intensity would be greatest at higher altitudes. Overall, 37.7% of the 798 adult frogs we sampled were infected with B. dendrobatidis, and infections were found in all the populations we examined. Contrary to our initial hypothesis, we found no consistent evidence that high‐altitude frogs were more likely to be infected than were lowland frogs. Further, the intensity of fungal infections (number of zoospores) on high‐altitude frogs did not differ significantly from that of lowland frogs. Batrachochytrium dendrobatidis appears to be capable of infecting frogs at all altitudes in the subtropics, suggesting that all populations are at risk of decline when conditions favour disease outbreaks. We did find evidence, however, that chytrid infections persist longer into summer in upland as compared with lowland areas, suggesting that montane amphibian populations remain susceptible to disease outbreaks for longer periods than do lowland populations. Further, we found that at high altitudes, temperatures optimal for chytrid growth and reproduction coincide with frog metamorphosis, the life‐stage at which frogs are most susceptible to chytrid infections. While these altitudinal differences may account for the differential population‐level responses to the presence of B. dendrobatidis, the reason why many of southeast Queensland's montane frog populations declined precipitously while lowland populations remained stable has yet to be resolved.  相似文献   

8.
Batrachochytrium dendrobatidis is a major pathogen of frogs worldwide, associated with declines in amphibian populations. Diagnosis of chytridiomycosis to date has largely relied upon histological and immunohistochemical examination of toe clips. This technique is invasive and insensitive particularly at early stages of infection when treatment may be possible. We have developed a real-time PCR Taqman assay that can accurately detect and quantify one zoospore in a diagnostic sample. This assay will assist the early detection of B. dendrobatidis in both captive and wild populations, with a high degree of sensitivity and specificity, thus facilitating treatment and protection of endangered populations, monitoring of pristine environments and preventing further global spread via amphibian trade.  相似文献   

9.
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has resulted in the decline or extinction of approximately 200 frog species worldwide. It has been reported throughout much of North America, but its presence on Prince Edward Island (PEI), on the eastern coast of Canada, was unknown. To determine the presence and prevalence of Bd on PEI, skin swabs were collected from 115 frogs from 18 separate sites across the province during the summer of 2009. The swabs were tested through single round end-point PCR for the presence of Bd DNA. Thirty-one frogs were positive, including 25/93 (27%) green frogs Lithobates (Rana) clamitans, 5/20 (25%) northern leopard frogs L. (R.) pipiens, and 1/2 (50%) wood frogs L. sylvaticus (formerly R. sylvatica); 12 of the 18 (67%) sites had at least 1 positive frog. The overall prevalence of Bd infection was estimated at 26.9% (7.2-46.7%, 95% CI). Prevalence amongst green frogs and leopard frogs was similar, but green frogs had a stronger PCR signal when compared to leopard frogs, regardless of age (p < 0.001) and body length (p = 0.476). Amongst green frogs, juveniles were more frequently positive than adults (p = 0.001). Green frogs may be the most reliable species to sample when looking for Bd in eastern North America. The 1 wood frog positive for Bd was found dead from chytridiomycosis; none of the other frogs that were positive for Bd by PCR showed any obvious signs of illness. Further monitoring will be required to determine what effect Bd infection has on amphibian population health on PEI.  相似文献   

10.
Batrachochytrium dendrobatidis ( Bd ), a chytrid fungus, is a causative agent of chytridiomycosis and amphibian population declines worldwide. The sequenced genome of Bd provides information necessary for studying the fungus and its molecular biology. Fluorescent microscopy is a technique used to image targeted molecules in live or fixed organisms to understand cellular trafficking and localization, but the use of fluorescent microscopy with Bd has not yet been demonstrated. Two fluorescent stains were tested for their use in live-cell imaging of Bd , i.e., the cell wall-specific fluorophore Solophenyl Flavine 7GFE and the DNA-specific fluorophore DRAQ5. These specific staining patterns were observed in live cultures of Bd when visualized with laser-scanning confocal microscopy.  相似文献   

11.
Batrachochytrium dendrobatidis is a major pathogen of frogs worldwide. It has been associated with catastrophic declines of frog populations including those in pristine habitats in Queensland, Australia. To facilitate genetic and disease studies of this fungus and related species, it is essential to have a reliable long-term storage method to maintain genetic integrity of isolates. We have adapted well-established techniques used for the long-term storage of tissue-culture cell lines to the preservation of B. dendrobatidis and other chytridiomycetes. This simple method has allowed us to recover these fungi from storage at -80 degrees C and in liquid nitrogen over an extended period. With this technique it is now possible to preserve saprobic and parasitic isolates from a variety of environmental and disease situations for comparative genetic and biological studies.  相似文献   

12.
Chytridiomycosis is a potentially fatal disease of amphibians caused by Batrachochytrium dendrobatidis, and is implicated in declines and extinctions of amphibian populations and species around the world. To cause local host extinction, a disease organism must persist at low host densities. One mechanism that could facilitate this is the ability to persist in the environment. In the laboratory, B. dendrobatidis spreads by both frog-to-frog and environment-to-frog transmission, and can persist on a number of biotic substrates. In the field, B. dendrobatidis has been detected on environmental samples taken during an epidemic, but it is not known if it persists in the environment when endemic. Retreat sites of 2 species of Australian rain forest stream frogs Litoria lesueuri and L. nannotis were sampled 0 to 3 d after occupation during the wet and dry seasons in northern Queensland, Australia, where chytridiomycosis has been endemic for at least 10 yr. The intensity and prevalence of infection in frogs during sampling were comparatively low compared with epidemics. Diagnostic quantitative polymerase chain reaction did not detect B. dendrobatidis in any retreat site samples. It thus appears that retreat sites are not a major environmental source of infection when B. dendrobatidis occurs at low prevalence and intensity on frogs. This suggests that control efforts may not need to eliminate the organism from the environment, at least when prevalence and intensity of infection are low in frogs. Simply treating hosts may be effective at controlling the disease in the wild.  相似文献   

13.
The chytridiomycete fungus Batrachochytrium dendrobatidis is known to be focally distributed across Europe, but has only been linked to "chytridiomycosis at a few locations in Spain. Here we report the second occurrence of chytridiomycosis in European amphibians. We found a population of endangered Sardinian newts (Euproctus platycephalus) exhibiting clinical signs of disease including loss of digits and patchy, discolored skin. Molecular examination of skin samples tested positive for B. dendrobatidis. The population of E. platycephalus has been in decline on a timescale consistent with the global emergence of chytridiomycosis, and the ecology of this salamander suggests that the disease in this species warrants concern.  相似文献   

14.
The Amazon forest is known for its astonishing amphibian diversity, yet the potential distribution and underlying impacts of the most important amphibian pathogen is unknown for most of Amazonia. In this retrospective survey of preserved Leptodactylus frogs, collected over a 119 yr period, we used quantitative PCR to detect the fungal pathogen Batrachochytrium dendrobatidis (Bd) and performed spatial scan analyses to identify spatiotemporal clusters of Bd. We also quantified the potential effect of environmental factors on the likelihood of Bd occurrence and generated an updated suitability map for Bd in the Amazon that included our retrospective sampling. We detected Bd in lowland Amazon as early as 1935, in the state of Pará, Brazil, and we found low prevalence (~ 3.8%) over time. We identified two statistically significant spatiotemporal clusters of Bd: a recent and narrow cluster in the Amazon River delta and a spatiotemporally broad cluster in the southern edge of Amazon and Brazilian savanna. Furthermore, we found an increase in Bd‐positive samples in the southwestern Amazon after the 1990s, coinciding with reported amphibian declines in neighboring high elevation sites on Andean slopes of Peru. Spatial regressions indicated that higher human interference, higher precipitation, and lower temperatures were significant predictors of Bd occurrence. Environmental niche modeling predicted some narrow areas of suitable climates along the Amazon's periphery and generally low climatic suitability for Bd in the central Amazon; although, we found clusters of Bd‐positive samples with unexpectedly high infection loads in areas of predicted low suitability. Our study indicates that accelerated human development may put Amazonian amphibians at risk from Bd introductions, and it highlights the potential need to monitor Bd dynamics near Amazonian port cities.  相似文献   

15.
The ability to quantify infections provides a tool with which to perform comparative pathological research. The need exists for a simplistic standard method to compare infection levels of Batrachochytrium dendrobatidis, a major cause of global amphibian declines. Through examination of skin sloughs of the Cape river frog Afrana fuscigula, we present an accessible method that not only provides quantitative measurements of B. dendrobatidis, but also provides information that increases the confidence of detection through histological surveys. The method relies on the availability of live animals that are actively shedding skin. By employing a direct microscopic count of sporangia, it is possible to express infection in terms of density. Micro-spatial infection in the skin of A. fuscigula is characterised by significant differences in sporangium density among the different components of the foot, and by similar differences in site infection frequency. Notably, toe tips and tubercles contain higher infection densities and are more often infected than webbing or the base of the foot. This pattern of infection might facilitate disease transmission due to the increased exposure of these components to abrasion. Density data can be used with the Poisson frequency function to approximate binomial probabilities of detecting B. dendrobatidis through histology. The probability matrix produced for A. fuscigula indicated that foot-site selection for histology markedly influenced the number of sections required to detect B. dendrobatidis at a specific level of probability. Thus, examination of a test sample of skin tissue with direct-count quantification can help in planning the sampling of tissues for histological surveys.  相似文献   

16.
Amphibian chytridiomycosis (caused by Batrachochytrium dendrobatis; Bd) was first identified in 1998 and has since been implicated in numerous amphibian declines worldwide. Most researchers have since investigated broad‐scale geographic and taxonomic occurrences of the pathogen in tropical lotic or cool montane systems. In this study, we analyzed how environmental factors, land use practices, and landscape structure may affect the dynamics of the pathogen's distribution in a landscape dominated by lentic systems within a region of Mediterranean climate. We quantified the occurrence of Bd testing the six resident amphibian species that occur in 54 isolated perennial and ephemeral ponds in central California between May and June annually from 2004 to 2007. The geographic distribution of Bd within the landscape varied markedly between years. Inter‐annual variation in climate affected the pond landscape structure indicating that climate conditions indirectly influence the distribution of the pathogen. Fourteen ponds, 12 perennial and 2 ephemeral, were positive for Bd≥3 yr of the study and were treated as Bd hotpots for comparative purposes. Occurrences of Bd within the landscape were spatially autocorrelated and ponds within ~1000–1500 m of Bd hotspots were more likely to test positive. Local land use, (presence/absence of grazing or recreational activity and developed lands), did not influence Bd status of a pond, indicating that the most likely means of Bd transmission between ponds may be waterfowl and/or amphibians.  相似文献   

17.
The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is lethal to many species of amphibians worldwide. Many studies have investigated the epidemiology of chytridiomycosis in amphibian populations, but few have considered possible host-pathogen coevolution. More specifically, investigations focused on the evolution of Bd, and the link with Bd virulence, are needed. Such studies, which may be important for conservation management of amphibians, depend on access to Bd isolates. Here we provide a summary of known Bd isolates that have been collected and archived in various locations around the world. Of 257 Bd isolates, we found that 53% originate from ranids in the United States. In many cases, detailed information on isolate origin is unavailable, and it is unknown how many isolates are cryo-archived. We suggest the creation of a centralized database of isolate information, and we urge researchers and managers to isolate and archive Bd to facilitate future research on chytridiomycosis.  相似文献   

18.
Chytridiomycosis caused by Batrachochytrium dendrobatidis (Chytridiomycota) has been implicated in declines of amphibian populations on four continents. We have developed a sensitive and specific polymerase chain reaction-based assay to detect this pathogen. We isolated B. dendrobatidis from captive and wild amphibians collected across North America and sequenced the internal transcribed spacer regions of the rDNA cassette of multiple isolates. We identified two primers (Bd1a and Bd2a) that are specific to B. dendrobatidis under amplification conditions described in this study. DNA amplification with Bd1a/Bd2a primers produced a fragment of approximately 300 bp from B. dendrobatidis DNA but not from DNA of other species of chytrids or common soil fungi. The assay detected 10 zoospores or 10 pg of DNA from B. dendrobatidis and detected infections in skin samples from a tiger salamander (Ambystoma tigrinum), boreal toads (Bufo boreas), Wyoming toads (Bufo baxteri), and smooth-sided toads (Bufo guttatus). This assay required only small samples of skin and can be used to process a large number of samples.  相似文献   

19.
A disease caused by the fungi Batrachochytrium dendrobatidis(Bd) and Batrachochytrium salamandrivorans(Bsal) is responsible for recent worldwide declines and extinctions of amphibian populations.The Qinghai-Tibetan Plateau(QTP) is aglobal biodiversity hotspot,yet little is known about the prevalence of Bd and Bsal in this region.In this study,we collected 336 non-invasive skin swabs from wild amphibians(including an exotic amphibian species) on the QTP.In addition,to assess the historical prevalence of Bd and Bsal on the QTP,we collected 117 non-invasive skin swabs from museum-archived amphibian samples(from 1964–1982) originating from the QTP.Our results showed all samples to be negative for Bd and Bsal.The government should ban the potentially harmful introduction of non-native amphibian species to the QTP and educate the public about the impacts of releasing exotic amphibians from chytridinfected areas into native environments of the QTP.  相似文献   

20.
Eighty soil samples were collected from various sites of Bahrain and screened for presence of keratinophilic fungi using hair baiting techniques for isolation. Thirty-six isolates were recovered and identified. The cultures were identified using macro- and micromorphological features. Their identification was also confirmed by the BLAST search of sequences of ITS1-5.8S-ITS2 rDNA region against the NCBI/Gene bank data and compared with deposited sequences for confirmation. Eight species of five genera were isolated viz. Aphanoascus fulvuscence (8.75%), Aphanoascus punsolae (20.00%), Chrysosporium indicum (2.50%), Chrysosporium tropicum (2.50%), Chrysosporium zonatum (3.75%), Spiromastix warcupii (1.25%), Microsporum gypseum (3.75%), and Trichophyton mentagrophytes (2.50%). In conclusion, our study indicates that keratinophilic fungi do occur in the various soils of Bahrain. Moreover, the narrow diversity and low density of keratinophilic fungi in the investigated soils is expected and is emblematic to other hot arid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号