首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli, the location of the site for cell division is regulated by the action of the Min proteins. These proteins undergo a periodic pole-to-pole oscillation that involves polymerization and ATPase activity of MinD under the controlling influence of MinE. This oscillation suppresses division near the poles while permitting division at midcell. Here, we propose a multistranded polymer model for MinD and MinE dynamics that quantitatively agrees with the experimentally observed dynamics in wild-type cells and in several well-studied mutant phenotypes. The model also provides new explanations for several phenotypes that have never been addressed by previous modeling attempts. In doing so, the model bridges a theoretical gap between protein structure, biochemistry, and mutant phenotypes. Finally, the model emphasizes the importance of nonequilibrium polymer dynamics in cell function by demonstrating how behavior analogous to the dynamic instability of microtubules is used by E. coli to achieve a sufficiently rapid timescale in controlling division site selection.  相似文献   

2.
The Min system in Escherichia coli directs division to the centre of the cell through pole-to-pole oscillations of the MinCDE proteins. We present a one-dimensional stochastic model of these oscillations which incorporates membrane polymerization of MinD into linear chains. This model reproduces much of the observed phenomenology of the Min system, including pole-to-pole oscillations of the Min proteins. We then apply this model to investigate the Min system during cell division. Oscillations continue initially unaffected by the closing septum, before cutting off rapidly. The fractions of Min proteins in the daughter cells vary widely, from 50%-50% up to 85%-15% of the total from the parent cell, suggesting that there may be another mechanism for regulating these levels in vivo.  相似文献   

3.
In both rod-shaped Bacillus subtilis and Escherichia coli cells, Min proteins are involved in the regulation of division septa formation. In E. coli , dynamic oscillation of MinCD inhibitory complex and MinE, a topological specificity protein, prevents improper polar septation. However, in B. subtilis no MinE is present and no oscillation of Min proteins can be observed. The function of MinE is substituted by that of an unrelated DivIVA protein, which targets MinCD to division sites and retains them at the cell poles. We inspected cell division when the E. coli Min system was introduced into B. subtilis cells. Expression of these heterologous Min proteins resulted in cell elongation. We demonstrate here that E. coli MinD can partially substitute for the function of its B. subtilis protein counterpart. Moreover, E. coli MinD was observed to have similar helical localization as B. subtilis MinD.  相似文献   

4.
Corbin BD  Yu XC  Margolin W 《The EMBO journal》2002,21(8):1998-2008
The MinCDE proteins help to select cell division sites in normal cylindrical Escherichia coli by oscillating along the long axis, preventing unwanted polar divisions. To determine how the Min system might function in cells with multiple potential division planes, we investigated its role in a round-cell rodA mutant. Round cells lacking MinCDE were viable, but growth, morphology and positioning of cell division sites were abnormal relative to Min+ cells. In round cells with a long axis, such as those undergoing cell division, green fluorescent protein (GFP) fusions to MinD almost always oscillated parallel to the long axis. However, perfect spheres or irregularly shaped cells exhibited MinD movement to and from multiple sites on the cell surface. A MinE-GFP fusion exhibited similar behavior. These results indicate that the Min proteins can potentially localize anywhere in the cell but tend to move a certain maximum distance from their previous assembly site, thus favoring movement along the cell's long axis. A new model for the spatial control of division planes by the Min system in round cells is proposed.  相似文献   

5.
The Min proteins are involved in determining cell division sites in bacteria and have been studied extensively in rod-shaped bacteria. We have recently shown that the gram-negative coccus Neisseria gonorrhoeae contains a min operon, and the present study investigates the role of minD from this operon. A gonococcal minD insertional mutant, CJSD1, was constructed and exhibited both grossly abnormal cell division and morphology as well as altered cell viability. Western blot analysis verified the absence of MinD from N. gonorrhoeae (MinD(Ng)) in this mutant. Hence, MinD(Ng) is required for maintaining proper cell division and growth in N. gonorrhoeae. Immunoblotting of soluble and insoluble gonococcal cell fractions revealed that MinD(Ng) is both cytosolic and associated with the insoluble membrane fraction. The joint overexpression of MinC(Ng) and MinD(Ng) from a shuttle vector resulted in a significant enlargement of gonococcal cells, while cells transformed with plasmids encoding either MinC(Ng) or MinD(Ng) alone did not display noticeable morphological changes. These studies suggest that MinD(Ng) is involved in inhibiting gonococcal cell division, likely in conjunction with MinC(Ng). The alignment of MinD sequences from various bacteria showed that the proteins are highly conserved and share several regions of identity, including a conserved ATP-binding cassette. The overexpression of MinD(Ng) in wild-type Escherichia coli led to cell filamentation, while overexpression in an E. coli minD mutant restored a wild-type morphology to the majority of cells; therefore, gonococcal MinD is functional across species. Yeast two-hybrid studies and gel-filtration and sedimentation equilibrium analyses of purified His-tagged MinD(Ng) revealed a novel MinD(Ng) self-interaction. We have also shown by yeast two-hybrid analysis that MinD from E. coli interacts with itself and with MinD(Ng). These results indicate that MinD(Ng) is required for maintaining proper cell division and growth in N. gonorrhoeae and suggests that the self-interaction of MinD may be important for cell division site selection across species.  相似文献   

6.
Ongoing sub-cellular oscillation of Min proteins is required to block minicelling in Escherichia coli. Experimentally, Min oscillations are seen in newly divided cells and no minicells are produced. In model Min systems many daughter cells do not oscillate following septation because of unequal partitioning of Min proteins between the daughter cells. Using the 3D model of Huang et al, we investigate the septation process in detail to determine the cause of the asymmetric partitioning of Min proteins between daughter cells. We find that this partitioning problem arises at certain phases of the MinD and MinE oscillations with respect to septal closure and it persists independently of parameter variation. At most 85% of the daughter cells exhibit Min oscillation following septation. Enhanced MinD binding at the static polar and dynamic septal regions, consistent with cardiolipin domains, does not substantially increase this fraction of oscillating daughters. We believe that this problem will be shared among all existing Min models and discuss possible biological mechanisms that may minimize partitioning errors of Min proteins following septation.  相似文献   

7.
In Escherichia coli the Z ring has the potential to assemble anywhere along the cell length but is restricted to midcell by the action of negative regulatory systems, including Min. In the current model for the Min system, the MinC/MinD division inhibitory complex is evenly distributed on the membrane and can disrupt Z rings anywhere in the cell; however, MinE spatially regulates MinC/MinD by restricting it to the cell poles, thus allowing Z ring formation at midcell. This model assumes that Z rings formed at different cellular locations have equal sensitivity to MinC/MinD in the absence of MinE. However, here we report evidence that differences in MinC/MinD sensitivity between polar and nonpolar Z rings exists even when there is no MinE. MinC/MinD at proper levels is able to block minicell production in Δmin strains without increasing the cell length, indicating that polar Z rings are preferentially blocked. In the FtsZ-I374V strain (which is resistant to MinC(C)/MinD), wild-type morphology can be easily achieved with MinC/MinD in the absence of MinE. We also show that MinC/MinD at proper levels can rescue the lethal phenotype of a min slmA double deletion mutant, which we think is due to the elimination of polar Z rings (or FtsZ structures), which frees up FtsZ molecules for assembly of Z rings at internal sites to rescue division and growth. Taken together, these data indicate that polar Z rings are more susceptible to MinC/MinD than internal Z rings, even when MinE is absent.  相似文献   

8.
Alignment of 36 MinC sequences revealed four completely conserved C-terminal glycines. As MinC inhibits cytokinesis in Neisseria gonorrhoeae and Escherichia coli, the functional importance of these glycines in N. gonorrhoeae MinC (MinC(Ng)) and E. coli MinC (MinC(Ec)) was investigated through amino acid substitution by using site-directed mutagenesis. Each mutant was evaluated for its ability to arrest cell division and to interact with itself and MinD. In contrast to overexpression of wild-type MinC, overexpression of mutant proteins in E. coli did not induce filamentation, indicating that they lost functionality. Yeast two-hybrid studies showed that MinC(Ec) interacts with itself and MinD(Ec); however, no interactions involving MinC(Ng) were detected. Therefore, a recombinant MinC protein, with the N terminus of MinC(Ec) and the C terminus of MinC(Ng), was designed to test for a MinC(Ng)-MinD(Ng) interaction. Each MinC mutant interacted with either MinC or MinD but not both, indicating the specificity of glycine residues for particular protein-protein interactions. Each glycine was mapped on the C-terminal surfaces (A, B, and C) of the solved Thermotoga maritima MinC structure. We found that MinC(Ec) G161, residing in close proximity to the A surface, is involved in homodimerization, which is essential for MinC function. Glycines corresponding to MinC(Ec) G135, G154, and G171, located within or adjacent to the B-C surface junction, are critical for MinC-MinD interactions. Circular dichroism revealed no gross structural perturbations of the mutant proteins, although the contribution of glycines to protein flexibility and stability cannot be discounted. Using molecular modeling, we propose that exposed conserved MinC glycines interact with exposed residues of the alpha-7 helix of MinD.  相似文献   

9.
The three Min proteins spatially regulate Z ring positioning in Escherichia coli and are dynamically associated with the membrane. MinD binds to vesicles in the presence of ATP and can recruit MinC or MinE. Biochemical and genetic evidence indicate the binding sites for these two proteins on MinD overlap. Here we solved the structure of a hydrolytic-deficient mutant of MinD truncated for the C-terminal amphipathic helix involved in binding to the membrane. The structure solved in the presence of ATP is a dimer and reveals the face of MinD abutting the membrane. Using a combination of random and extensive site-directed mutagenesis additional residues important for MinE and MinC binding were identified. The location of these residues on the MinD structure confirms that the binding sites overlap and reveals that the binding sites are at the dimer interface and exposed to the cytosol. The location of the binding sites at the dimer interface offers a simple explanation for the ATP dependence of MinC and MinE binding to MinD.  相似文献   

10.
Proper placement of the division apparatus in Escherichia coli requires pole-to-pole oscillation of the MinC division inhibitor. MinC dynamics involves a membrane association-dissociation cycle that is driven by the activities of the MinD ATPase and the MinE topological specificity factor, which themselves undergo coupled oscillatory localization cycles. To understand the biochemical mechanisms underlying Min protein dynamics, we studied the interactions of purified Min proteins with phospholipid vesicles and the role of ATP in these interactions. We show that (i) the ATP-bound form of MinD (MinD.ATP) readily associates with phospholipid vesicles in the presence of Mg(2+), whereas the ADP-bound form (MinD.ADP) does not; (ii) MinD.ATP binds membrane in a self-enhancing fashion; (iii) both MinC and MinE can be recruited to MinD.ATP-decorated vesicles; (iv) MinE stimulates dissociation of MinD.ATP from the membrane in a process requiring hydrolysis of the nucleotide; and (v) MinE stimulates dissociation of MinC from MinD.ATP-membrane complexes, even when ATP hydrolysis is blocked. The results support and extend recent work by Z. Hu et al. (Z. Hu, E. P. Gogol, and J. Lutkenhaus, Proc. Natl. Acad. Sci. USA 99:6761-6766, 2002) and support models of protein oscillation wherein MinE induces Min protein dynamics by stimulating the conversion of the membrane-bound form of MinD (MinD.ATP) to the cytoplasmic form (MinD.ADP). The results also indicate that MinE-stimulated dissociation of MinC from the MinC-MinD.ATP-membrane complex can, and may, occur prior to hydrolysis of the nucleotide.  相似文献   

11.
The MinD ATPase is critical to the oscillation of the Min proteins, which limits formation of the Z ring to midcell. In the presence of ATP, MinD binds to the membrane and recruits MinC, forming a complex that can destabilize the cytokinetic Z ring. MinE, which is also recruited to the membrane by MinD, displaces MinC and stimulates the MinD ATPase, resulting in the oscillation of the Min proteins. In this study we have investigated the role of lysine 11, present in the deviant Walker A motif of MinD, and the three residues in helix 7 (E146, S148, and D152) that interact electrostatically with lysine 11. Lysine 11 is required for interaction of MinD with the membrane, MinC, MinE, and itself. In contrast, the three residues in helix 7 that interact with lysine 11 are not required for binding to the membrane or activation of MinC. They are also not required for MinE binding; however, they are required for MinE to stimulate the MinD ATPase. Interestingly, the D152A mutant self-interacts, binds to the membrane, and recruits MinC and MinE in the presence of ADP as well as ATP. This mutant provides evidence that dimerization of MinD is sufficient for MinD to bind the membrane and recruit its partners.  相似文献   

12.
Placement of the Z ring at midcell in Escherichia coli is assured by the action of the min system, which blocks usage of potential division sites that exist at the cell poles. This activity of min is achieved through the action of an inhibitor of division, MinC, that is activated by MinD and topologically regulated by MinE. In this study, we have used a functional GFP-MinC fusion to monitor the location of MinC. We find that GFP-MinC is a cytoplasmic protein in the absence of the other Min proteins. The addition of MinD, a peripheral membrane protein that interacts with MinC, results in GFP-MinC appearing on the membrane. In the presence of both MinD and MinE, GFP-MinC oscillates rapidly between the halves of the cell. Thus, MinC is positioned by the other Min products, but in a dynamic manner so that it is in position to inhibit Z ring assembly away from midcell.  相似文献   

13.
Escherichia coli cells contain potential division sites at midcell and adjacent to the cell poles. Selection of the correct division site at midcell is controlled by three proteins: MinC, MinD, and MinE. It has previously been shown (D. Raskin and P. de Boer, Cell 91:685-694, 1997) that MinE-Gfp localizes to the midcell site in an MinD-dependent manner. We use here Gfp-MinD to show that MinD associates with the membrane around the entire periphery of the cell in the absence of the other Min proteins and that MinE is capable of altering the membrane distribution pattern of Gfp-MinD. Studies with the isolated N-terminal and C-terminal MinE domains indicated different roles for the two MinE domains in the redistribution of membrane-associated MinD.  相似文献   

14.
In Escherichia coli, the Min system, consisting of three proteins, MinC, MinD, and MinE, negatively regulates FtsZ assembly at the cell poles, helping to ensure that the Z ring will assemble only at midcell. Of the three Min proteins, MinC is sufficient to inhibit Z-ring assembly. By binding to MinD, which is mostly localized at the membrane near the cell poles, MinC is sequestered away from the cell midpoint, increasing the probability of Z-ring assembly there. Previously, it has been shown that the two halves of MinC have two distinct functions. The N-terminal half is sufficient for inhibition of FtsZ assembly, whereas the C-terminal half of the protein is required for binding to MinD as well as to a component of the division septum. In this study, we discovered that overproduction of the C-terminal half of MinC (MinC(122-231)) could also inhibit cell division and that this inhibition was at the level of Z-ring disassembly and dependent on MinD. We also found that fusing green fluorescent protein to either the N-terminal end of MinC(122-231), the C terminus of full-length MinC, or the C terminus of MinC(122-231) perturbed MinC function, which may explain why cell division inhibition by MinC(122-231) was not detected previously. These results suggest that the C-terminal half of MinC has an additional function in the regulation of Z-ring assembly.  相似文献   

15.
In Escherichia coli, the min system prevents division away from midcell through topological regulation of MinC, an inhibitor of Z-ring formation. The topological regulation involves oscillation of MinC between the poles of the cell under the direction of the MinDE oscillator. Since the mechanism of MinC involvement in the oscillation is unknown, we investigated the interaction of MinC with the other Min proteins. We observed that MinD dimerized in the presence of ATP and interacted with MinC. In the presence of a phospholipid bilayer, MinD bound to the bilayer and recruited MinC in an ATP-dependent manner. Addition of MinE to the MinCD-bilayer complex resulted in release of both MinC and MinD. The release of MinC did not require ATP hydrolysis, indicating that MinE could displace MinC from the MinD-bilayer complex. In contrast, MinC was unable to displace MinE bound to the MinD-bilayer complex. These results suggest that MinE induces a conformational change in MinD bound to the bilayer that results in the release of MinC. Also, it is argued that binding of MinD to the membrane activates MinC.  相似文献   

16.
The Min proteins (MinC, MinD, and MinE) form a pole-to-pole oscillator that controls the spatial assembly of the division machinery in Escherichia coli cells. Previous studies identified that interactions of MinD with phospholipids positioned the Min machinery at the membrane. We extend these studies by measuring the affinity, kinetics, and ATPase activity of E. coli MinD, MinE, and MinDE binding to supported lipid bilayers containing varying compositions of anionic phospholipids. Using quartz crystal microbalance measurements, we found that the binding affinity (Kd) for the interaction of recombinant E. coli MinD and MinE with lipid bilayers increased with increasing concentration of the anionic phospholipids phosphatidylglycerol and cardiolipin. The Kd for MinD (1.8 μm) in the presence of ATP was smaller than for MinE (12.1 μm) binding to membranes consisting of 95:5 phosphatidylcholine/cardiolipin. The simultaneous binding of MinD and MinE to membranes revealed that increasing the concentration of anionic phospholipid stimulates the initial rate of adsorption (kon). The ATPase activity of MinD decreased in the presence of anionic phospholipids. These results indicate that anionic lipids, which are concentrated at the poles, increase the retention of MinD and MinE and explain its dwell time at this region of bacterial cells. These studies provide insight into interactions between MinD and MinE and between these proteins and membranes that are relevant to understanding the process of bacterial cell division, in which the interaction of proteins and membranes is essential.  相似文献   

17.
Dynamic oscillation of the Min system in Escherichia coli determines the placement of the division plane at the midcell. In addition to stimulating MinD ATPase activity, we report here that MinE can directly interact with the membrane and this interaction contributes to the proper MinDE localization and dynamics. The N‐terminal domain of MinE is involved in direct contact between MinE and the membranes that may subsequently be stabilized by the C‐terminal domain of MinE. In an in vitro system, MinE caused liposome deformation into membrane tubules, a property similar to that previously reported for MinD. We isolated a mutant MinE containing residue substitutions in R10, K11 and K12 that was fully capable of stimulating MinD ATPase activity, but was deficient in membrane binding. Importantly, this mutant was unable to support normal MinDE localization and oscillation, suggesting that direct MinE interaction with the membrane is critical for the dynamic behavior of the Min system.  相似文献   

18.
Oscillations of the Min protein system are involved in the correct midcell placement of the divisome during Escherichia coli cell division. Based on molecular interactions of the Min system, we formulated a mathematical model that reproduces Min patterning during cell growth and division. Specifically, the increase in the residence time of MinD attached to the membrane as its own concentration increases, is accounted for by dimerisation of membrane-bound MinD and its interaction with MinE. Simulation of this system generates unparalleled correlation between the waveshape of experimental and theoretical MinD distributions, suggesting that the dominant interactions of the physical system have been successfully incorporated into the model. For cells where MinD is fully-labelled with GFP, the model reproduces the stationary localization of MinD-GFP for short cells, followed by oscillations from pole to pole in larger cells, and the transition to the symmetric distribution during cell filamentation. Cells containing a secondary, GFP-labelled MinD display a contrasting pattern. The model is able to account for these differences, including temporary midcell localization just prior to division, by increasing the rate constant controlling MinD ATPase and heterotetramer dissociation. For both experimental conditions, the model can explain how cell division results in an equal distribution of MinD and MinE in the two daughter cells, and accounts for the temperature dependence of the period of Min oscillations. Thus, we show that while other interactions may be present, they are not needed to reproduce the main characteristics of the Min system in vivo.  相似文献   

19.
The Escherichia coli Min system contributes to spatial regulation of cytokinesis by preventing assembly of the Z ring away from midcell. MinC is a cell division inhibitor whose activity is spatially regulated by MinD and MinE. MinC has two functional domains of similar size, both of which have division inhibitory activity in the proper context. However, the molecular mechanism of the inhibitory action of either domain is not very clear. Here, we report that the septal localization and division inhibitory activity of MinCC/MinD requires the conserved C-terminal tail of FtsZ. This tail also mediates interaction with two essential division proteins, ZipA and FtsA, to link FtsZ polymers to the membrane. Overproduction of MinCC/MinD displaces FtsA from the Z ring and eventually disrupts the Z ring, probably because it also displaces ZipA. These results support a model for the division inhibitory action of MinC/MinD. MinC/MinD binds to ZipA and FtsA decorated FtsZ polymers located at the membrane through the MinCC/MinD–FtsZ interaction. This binding displaces FtsA and/or ZipA, and more importantly, positions MinCN near the FtsZ polymers making it a more effective inhibitor.  相似文献   

20.
Margolin W 《Current biology : CB》2001,11(10):R395-R398
Placement of the division site in Escherichia coli is determined in part by three Min proteins. Recent studies have shown that MinE, previously thought to form a static ring near the division site at the midcell position, actually joins MinC and MinD in their rapid oscillation between the cell poles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号