首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Amphibian skin is a rich source of peptides that are specific to pathogens and act by disrupting bacterial membranes. Three antimicrobial peptides were isolated from the skin glands of Australian tree frogs,Litoria caerulea andLitoria genimaculata. NMR spectroscopy was used to observe changes induced by these peptides in the31P resonances of bacterial membranes in vivo. Caerin 1.1 and maculatin 1.1, both wide-spectrum antibiotics disrupted the membranes ofBacillus cereus andStaphylococcus epidermidis (Gram-positive), leading to an increase in the isotropic31P NMR signal. Caerin 4.1, a narrow-spectrum antibiotic, however, did not affect the31P spectra of these organisms. The results demonstrate the use of31P NMR to study the effects of membrane-disrupting agents on the membranes of live bacteria.  相似文献   

2.
Summary Core peptide (CP) is a unique peptide derived from the transmembrane sequence of T cell antigen receptor (TCR)-alpha chain and is capable of inhibiting the immune response both invitro and in animal models of T cell mediated inflammation. The structure of CP, with sequence GLRILLLKV, is similar to the amphipathic region of many peptides. Unlike antimicrobial peptides, however, which damage cell membranes, electron microscopy and propidium iodide exclusion assays on cell membranes suggest that CP does not create pores and may act by interfering with signal transduction at the membrane level. To investigate this effect further we report the results of31P and2H solid-state NMR spectroscopy of CP on model membranes. As predicted, even at high concentrations of CP, the structure of model membranes was not significantly perturbed. Only at the very high peptide-to-lipid molar ratio of 1∶10 significant effects on the model membranes were observed. We conclude that CP does not destroy the integrity of the lipid bilayer.  相似文献   

3.
Dynamic structures of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers induced in oriented lipid membranes, which are interacting with membrane-acting antimicrobial peptides (AMPs), magainin-2 and aurein-3.3, were explored by 31P and 2H solid-state NMR (ssNMR) spectroscopy. Various types of phospholipid systems, such as POPC-d31, POPC-d31/POPG, and POPC-d31/cholesterol, were investigated to understand the membrane disruption mechanisms of magainin-2 and aurein-3.3 peptides at various peptide-to-lipid (P:L) ratios. The experimental lineshapes of anisotropic 31P and 2H ssNMR spectra measured on these peptide-lipid systems were simulated reasonably well by assuming the presence of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers, in membranes. Furthermore, the observed decrease in the anisotropic frequency span of either 31P or 2H ssNMR spectra of oriented lipid bilayers, particularly when anionic POPG lipids are interacting with AMPs at high P:L ratios, can directly be explained by a thinned membrane surface model with fast lateral diffusive motions of lipids. The spectral analysis protocol we developed enables extraction of the lateral diffusion coefficients of lipids distributed on the curved surfaces of pores and thinned bilayers on a few nanometers scale.  相似文献   

4.
Nuclear magnetic resonance (NMR) technology was applied to study the glucose metabolism inTribolium confusum (Coleoptera).13C signals of D-(1-13C)glucose eaten by beetles were clearly detected in such metabolites of the glucose metabolism as glycogen, trehalose, triacylglycerol, alanine and proline by13C-NMR. After glucose feeding the31P-NMR spectra ofT. confusum showed the signal intensity increases in arginine-phosphate, sugar-phosphate and uridine diphosphoglucose. The results demonstrated the potential of NMR analysis for the study of glucose metabolism inT. confusum.  相似文献   

5.
Ethanol inhibition of glucose catabolism in Zymomonas mobilis was investigated using 31P NMR spectroscopy in vivo and of perchloric acid extracts from cell suspensions incubated with 0, 5 and 10% (w/v) ethanol. In vivo 31P NMR experiments revealed slower glucose utilization and decreased levels of nucleoside triphosphates in the presence of 10% ethanol as compared to controls. Using 31P NMR spectroscopy of perchloric acid extracts, intracellular accumulation of 3.4 mM 3-phosphoglycerate was found when 10% ethanol was present in the medium. No accumulation of this metabolite occurred in cells incubated with 0 and 5% ethanol. Enzyme assays confirmed that phosphoglycerate-mutase and enolase were inhibited 31 and 40%, respectively, in the presence of 10% ethanol in the test system. Therefore, under the conditions used the decrease in the fermentative activity of Z. mobilis at high ethanol concentrations is due to inhibition of phosphoglycerate-mutase and enolase.Abbreviation KDPG 2-keto-3-deoxy-6-phosphogluconate  相似文献   

6.
Core peptide (CP) is a unique peptide derived from thetransmembrane sequence of T cell antigen receptor (TCR)-alpha chain and is capable of inhibiting the immuneresponse both in vitro and in animal models of Tcell mediated inflammation. The structure of CP, withsequence GLRILLLKV, is similar to the amphipathic regionof many peptides. Unlike antimicrobial peptides,however, which damage cell membranes, electron microscopyand propidium iodide exclusion assays on cell membranessuggest that CP does not create pores and may act byinterfering with signal transduction at the membranelevel. To investigate this effect further we report theresults of 31P and 2H solid-state NMRspectroscopy of CP on model membranes. As predicted,even at high concentrations of CP, the structure of modelmembranes was not significantly perturbed. Only at thevery high peptide-to-lipid molar ratio of 1:10significant effects on the model membranes were observed. We conclude that CP does not destroy the integrity of thelipid bilayer.  相似文献   

7.
The internal pH of peroxisomes in the yeasts Hansenula polymorpha, Candida utilis and Trichosporon cutaneum X4 was estimated by 31P nuclear magnetic resonance (NMR) spectroscopy. 31P NMR spectra of suspensions of intact cells of these yeasts, grown under conditions of extensive peroxisomal proliferation, displayed two prominent Pi-peaks at different chemical shift positions. In control cells grown on glucose, which contain very few peroxisomes, only a single peak was observed. This latter peak, which was detected under all growth conditions, was assigned to cytosolic Pi at pH 7.1. The additional peak present in spectra of peroxisome-containing cells, reflected Pi at a considerably lower pH of approximately 5.8–6.0. Experiments with the protonophore carbonyl cyanide m-chlorophenylhydrazon (CCCP) and the ionophores valinomycin and nigericin revealed that separation of the two Pi-peaks was caused by a pH-gradient across a membrane separating the two pools. Experiments with chloroquine confirmed the acidic nature of one of these pools. In a number of transfer experiments with the yeast H. polymorpha it was shown that the relative intensity of the Pi-signal at the low pH-position was correlated to the peroxisomal volume fraction. These results strongly suggest that this peak has to be assigned to Pi in peroxisomes, which therefore are acidic in nature. The presence of peroxisome-associated Pi was confirmed cytochemically.Abbreviations CCCP Carbonyl cyanide m-chlorophenylhydrazon - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

8.
Protein-induced distortion is a dramatic but not universally observed feature of sequence-specific DNA interactions. This is illustrated by the crystal structures of restriction enzyme–DNA complexes: While some of these structures exhibit DNA distortion, others do not. Among the latter is PvuII endonuclease, a small enzyme that is also amenable to NMR spectroscopic studies. Here 31P NMR spectroscopy is applied to demonstrate the unique spectral response of DNA to sequence-specific protein interactions. The 31P NMR spectrum of a noncognate DNA exhibits only spectral broadening upon the addition of enzyme. However, when enzyme is added to target DNA, a number of 31P resonances shift dramatically. The magnitudes of the chemical shifts (2–3 ppm) are among the largest observed. Site-specific substitution with phosphoramidates and phosphorothioates are used analyze these effects. While such spectral features have been interpreted as indicative of DNA backbone distortions, FRET analysis indicates that this does not occur in PvuII-cognate DNA complexes in solution. The distinct 31P spectral signature observed for cognate DNA mirrors that observed for the enzyme, underscoring the unique features of cognate complex formation.  相似文献   

9.
Whole cell extracts ofArabidopsis cell cultures maintained on various sucrose concentrations (0,3, and 6%) were analyzed by1H NMR spectroscopy to determine the comprehensive metabolic change in these cultures during sucrose starvation. The amount of sucrose, glucose, and fructose in the cells decreased to almost nothing after 12 h of culture in medium without sucrose. In contrast, the total free amino acid content of the cells increased as the culture proceeded. Among the free amino acids, phenylalanine and malic acid increased the most, followed by asparagine and alanine, whereas glutamic acid did not change significantly. These results are in agreement with previous studies using HPLC.1H NMR spectroscopy enabled measurement of changes in the sugar and free amino acid content of whole cell extracts without fractionation and complicated sample preparation. These results indicate that comprehensive metabolic changes in the cells can be determined by a simple, rapid method using whole cell extracts and1H NMR spectroscopy.  相似文献   

10.
Summary The technique of15N isotope dilution was used to verify that nitrogen was fixed and transferred to the plant byKlebsiella pneumoniae strain Pp in association withPoa pratensis orTriticum aestivum. Surface sterilized, sprouting seeds were inoculated withK. pneumoniae and grown in sand in modified Leonard jars. Potassium nitrate enriched with15N was used to provide N concentrations ranging from 10–40 mg Nl–1 nutrient solution. After 10–18 weeks the shoots and roots were analyzed separately for dry matter, N content, total N, and atom %15N excess. The acetylene reduction technique was used to test for the presence of N2-fixing organisms on the roots. The data from15N isotope dilution demonstrated that up to 33.8% of N in the shoots ofP. pratensis and 15.9% in those ofT. aestivum were derived from associative N2 fixation byK. pneumoniae. In most experiments the dry matter yield, N content, and total N yield of the shoots ofP. pratensis were increased byK. pneumoniae inoculation, whereas inoculation had no significant effect on the dry matter yield, N content or total N of the shoots ofT. aestivum.  相似文献   

11.
In suspensions of the green alga Chlorella fusca the influence of high pH and high ethylene-diamine-tetraacetic acid concentrations in the external medium, of French-press and perchloric acid extraction of the cells and of alkalization of the intracellular pH on the polyphosphate signal in 31P-nuclear magnetic resonance (31P NMR) spectra was investigated.The results show that part of the polyphosphates of asynchronous Chlorella cells are located outside the cytoplasmic membrane and complexed with divalent metal-ions. These polyphosphates are tightly bound to the cell wall and/or the cytoplasmic membrane and are not susceptible to hydrolyzation by strong acid at room temperature, in contrast to the intracytoplasmic polyphosphates.Upon alkalization of the internal pH of Chlorella cells, polyphosphates, previously not visible in the spectra become detectable by 31P-NMR-spectroscopy. 31P-NMR spectroscopic monitoring of polyphosphates during gradual alkalization of the extra-and intracellular space is proposed as a quick method for the estimation of the cellular polyphosphate content and distribution.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - NTP/NDP Nucleotide triphosphate/-diphosphate - PCA Perchloric acid - 31P-NMR 31P-nuclear magnetic resonance - PolyP polyphosphates - PP1, PP2, PP3 terminal, second and third phosphate residue of polyphosphates, respectively - PP4 core phosphate residues of polyphosphates  相似文献   

12.
Carrier-free31Silicon (31Si) prepared by neutron activation, was injected in the form of31Si-labeled silicic acid into five albino male rats, and the organ and tissue distribution of labeled silicic acid was determined at sacrifice after 30 min. The kidney was found to contain 0.85% of the injected dose (ID) per gram of tissue; skin had 0.3% ID/G; testes 0.29; bone 0.26; liver 0.22; and brain 0.13. When expressed as % ID/organ, voluntary muscle had 14.6%; skin 10.8; bone 3.4; liver 1.6; kidneys 1.5; testes 0.8, and brain 0.2. These results indicate the need for further research into silicon metabolism in kidney, skin, bone, and brain.  相似文献   

13.
31P nuclear magnetic resonance (NMR) spectroscopy was used to study phosphate (P) metabolism in mycorrhizal and nonmycorrhizal roots of cucumber (Cucumis sativus L) and in external mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. The in vivo NMR method allows biological systems to be studied non-invasively and non-destructively. 31P NMR experiments provide information about cytoplasmic and vacuolar pH, based on the pH-dependent chemical shifts of the signals arising from the inorganic P (Pi) located in the two compartments. Similarly, the resonances arising from α, β and γ phosphates of nucleoside triphosphates (NTP) and nucleoside diphosphates (NDP) supply knowledge about the metabolic activity and the energetic status of the tissue. In addition, the kinetic behaviour of P uptake and storage can be determined with this method. The 31P NMR spectra of excised AM fungi and mycorrhizal roots contained signals from polyphosphate (PolyP), which were absent in the spectra of nonmycorrhizal roots. This demonstrated that the Pi taken up by the fungus was transformed into PolyP with a short chain length. The spectra of excised AM fungi revealed only a small signal from the cytoplasmic Pi, suggesting a low cytoplasmic volume in this AM fungus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Phospholipids have long been known to be the principal constituents of the bilayer matrix of cell membranes. While the main function of cell membranes is to provide physical separation between intracellular and extracellular compartments, further biological and biochemical functions for phospholipids have been identified more recently, notably in cell signaling, cell recognition and cell–cell interaction, but also in cell growth, electrical insulation of neurons and many other processes. Therefore, accurate and efficient determination of tissue phospholipid composition is essential for our understanding of biological tissue function. 31P NMR spectroscopy is a quantitative and fast method for analyzing phospholipid extracts from biological samples without prior separation. However, the number of phospholipid classes and subclasses that can be quantified separately and reliably in 31P NMR spectra of tissue extracts is critically dependent on a variety of experimental conditions. Until recently, little attention has been paid to the optimization of phospholipid 31P NMR spectra. This review surveys the basic physicochemical properties that determine the quality of phospholipid spectra, and describes an optimization strategy based on this assessment. Notably, the following experimental parameters need to be controlled for systematic optimization: (1) extract concentration, (2) concentration of chelating agent, (3) pH value of the aqueous component of the solvent system, and (4) temperature of the NMR measurement. We conclude that a multiparametric optimization approach is crucial to obtaining highly predictable and reproducible 31P NMR spectra of phospholipids.  相似文献   

15.
Interactions between 15N-labelled peptides or proteins and lipids can be investigated using membranes aligned on a thin polymer film, which is rolled into a cylinder and inserted into the MAS-NMR rotor. This can be spun at high speed, which is often useful at high field strengths. Unfortuantely, substrate films like commercially available polycarbonate or PEEK produce severe overlap with peptide and protein signals in 13C-MAOSS NMR spectra. We show that a simple house hold foil support allows clear observation of the carbonyl, aromatic and Cα signals of peptides and proteins as well as the ester carbonyl and choline signals of phosphocholine lipids. The utility of the new substrate is validated in applications to the membrane active peptide zervamicin IIB. The stability and macroscopic ordering of thin PC10 bilayers was compared with that of thicker POPC bilayers, both supported on the household foil. Sidebands in the 31P-spectra showed a high degree of alignment of both the supported POPC and PC10 lipid molecules. Compared with POPC, the PC10 lipids are slightly more disordered, most likely due to the increased mobilities of the shorter lipid molecules. This mobility prevents PC10 from forming stable vesicles for MAS studies. The 13C-peptide peaks were selectively detected in a 13C-detected 1H-spin diffusion experiment. Qualitative analysis of build-up curves obtained for different mixing times allowed the transmembrane peptide in PC10 to be distinguished from the surface bound topology in POPC. The 13C-MAOSS results thus independently confirms previous findings from 15N spectroscopy [Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O’Neil, J.D.J. and Raap, J. (2001) Biochemistry, 40, 9428–9437]. In summary, application of house hold foil opens the possibility of measuring high resolution 13C-NMR spectra of peptides and proteins in well ordered membranes, which are required to determine the secondary and supramolecular structures of membrane active peptides, proteins and aggregates.  相似文献   

16.
Depolarization-activated and hyperpolarization-activated ion conductances in the membrane of a marine dinoflagellateNoctiluca miliaris were examined under voltage-clamp conditions.Noctiluca exhibited a transient inward current in response to a step depolarization from a holding potential level of –80 mV to a potential level more positive than –50 mV. The I–V relationship for the current exhibited typical N-shaped characteristics similar to those of most excitable membranes. The current was inactivated by a membrane depolarization. The reversal potential of the current shifted in hyperpolarizing direction when the external Na+ concentration was lowered. The transient inward current is assumed to be responsible for the Na+-dependent positive spike in non-clamped specimens ofNoctiluca.Noctiluca exhibited a transient outward current in response to a step hyperpolarization from a holding potential level of –20 mV to a potential level more negative than –30 mV. The I–V relationship for the current was a typical N-shape as if it was turned 180° around its origin. The outward current showed a two-step exponential time-decay. The outward current was inactivated by a membrane hyperpolarization. The reversal potential shifted in the depolarizing direction when the external Cl concentration was lowered. The transient outward current is responsible for the Cl-dependent negative spike in non-clamped specimens ofNoctiluca.Abbreviations ASW artificial seawater - TRP tentacle regulating potentials - TTX tetrodotoxin  相似文献   

17.
Potentiometric, conductometric and 31P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP6 ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P–O–Fe–O–P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)–InsP6 aggregates. 31P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T1 relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP6 molecule results in an unstable heterogeneous system.  相似文献   

18.
《Biophysical journal》2022,121(8):1512-1524
Antimicrobial peptides are promising therapeutic agents to mitigate the global rise of antibiotic resistance. They generally act by perturbing the bacterial cell membrane and are thus less likely to induce resistance. Because they are membrane-active molecules, it is critical to verify and understand their potential action toward eukaryotic cells to help design effective and safe drugs. In this work, we studied the interaction of two antimicrobial peptides, aurein 1.2 and caerin 1.1, with red blood cell (RBC) membranes using in situ 31P and 2H solid-state NMR (SS-NMR). We established a protocol to integrate up to 25% of deuterated fatty acids in the membranes of ghosts, which are obtained when hemoglobin is removed from RBCs. Fatty acid incorporation and the integrity of the lipid bilayer were confirmed by SS-NMR and fluorescence confocal microscopy. Leakage assays were performed to assess the lytic power of the antimicrobial peptides. The in situ perturbation of the ghost membranes by aurein 1.2 and caerin 1.1 revealed by 31P and 2H SS-NMR is consistent with membrane perturbation through a carpet mechanism for aurein 1.2, whereas caerin 1.1 acts on RBCs via pore formation. These results are compatible with fluorescence microscopy images of the ghosts. The peptides interact with eukaryotic membranes following similar mechanisms that take place in bacteria, highlighting the importance of hydrophobicity when determining such interactions. Our work bridges model membranes and in vitro studies and provides an analytical toolbox to assess drug toxicity toward eukaryotic cells.  相似文献   

19.
Spiroplasma kunkelii and Spiroplasma citri, both helical-shaped cell wall-less bacteria, are the causative agents of corn stunt disease and citrus stubborn disease, respectively. Plants exhibiting natural resistance to these phytopathogenic spiroplasmas are currently lacking. Engineering artificial plant resistance using antimicrobial peptides (AMPs) has been conceived as a new approach to control the agronomically important spiroplasmal diseases. In preparation for such task, the present study focused on screening of AMPs that have potentials to curb the growth of S. kunkelii and S. citri. Four AMPs, including Novispirin T7, Caerin 1.1, Tricholongin and Dhvar4, were selected for in vitro growth inhibition test. A liquid assay method was developed for quick qualitative and quantitative evaluations of the AMPs. Our results demonstrated that Novispirin T7 and Caerin 1.1 were able to inhibit the growth of both phytopathogenic spiroplasmas with the efficacy comparable to that of tetracycline. Cell deformations were observed in spiroplasma cultures treated with these two peptides, indicating interactions of the AMPs with the spiroplasma cell membranes. The minimum inhibitory concentrations (MICs) of the AMPs against S. kunkelii and S. citri were determined.  相似文献   

20.
One- and two-dimensional1H- and13C-NMR spectra of lipid extracts fromUlva rigida, Gracilaria longa, Fucus virsoides andCodium tomentosum collected in the northern Adriatic Sea allowed screening of the content of fatty acid chains, carotenoids, free and acylated cholesterol and chlorophylls. The carotenoid-to-polyunsaturated fatty acid molar ratio was taken as a comparison parameter in samples ofUlva rigida collected in differentloci and seasons; the value was markedly higher in samples from the Lagoon of Venice than from marine coastal waters. The total cholesterol concentration was evaluated by1H-NMR spectroscopy and similar values were found for all species. Two-dimensional heterocorrelated NMR spectroscopy was shown to give characteristic fingerprints of the lipid extracts from algal samples as regards the content in chlorophylls, unsaturated fatty acids and carotenoids.author for correspondence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号