首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.5 S RNA, the nucleic acid component of the 1,4-alpha-D-glucan: 1,4-alpha-D-glucan 6-alpha-(1,4-alpha-glucano)-transferase from rabbit muscles, devoid of any protein, catalyses the branching reaction, as does the holoenzyme. The conclusion is drawn that 2.5 S RNA is a ribozyme. To get an insight into the significance of different parts of the molecule for the catalytic activity of 2.5 S RNA, a large fragment isolated from its partial RNAase A digest was investigated. This fragment which proved to be the middle part of polyribonucleotide chain containing all modified nucleotides exerts some catalytic activity, too.  相似文献   

2.
The fluorescence yield and lifetime of ethidium bromide complexes with 1,4-alpha-glucan branching enzyme and its free nucleic acid component 2.5S RNA were measured. Both fluorescence parameters showed a 10-fold increase in comparison with those characteristics for the free dye. This increase allows to suggest the existence of double-stranded regions in 2.5S RNA both in the free as well as in the protein bound state. The coefficients of fluorescence polarization were also determined for ethidium bromide complexed with free and protein bound 2.5S RNA. They proved to be 13 and 18% respectively. No concentration depolarization was observed in both types of ethidium bromide and ethidium bromide--enzyme--RNA complexes. This proves that the double-stranded regions are rather short and that two ethidium bromide molecules can't be bound to each of them. The binding isotherms were measured for ethidium bromide absorbed on 2.5S RNA and on the holoenzyme. Their parameters napp and rmax are identical in the cases of free and protein bound 2,5S RNA (rmax = 0.046 +/- 0.001). However the binding constants of ethidium bromide complexes with free and protein bound 2.5S RNA differ significantly (Kapp = 2.2 X 10(6) M-1 for free 2.5S RNA and Kapp = 1.6 X 10(6) M-1 for the holoenzyme). The quantity of nucleotides involved in the two double-stranded regions accessible for ethidium binding is estimated to be about 28%. Increasing of Mg2+ ion concentration up to 10(-3) results in a decrease of ethidium bromide binding with double stranded regions. It may be due to a more compact tertiary structure of 2.5S RNA in the presence of Mg2+ in the free as well as in protein bound state.  相似文献   

3.
Alpha-L-LNA (alpha-L-ribo configured locked nucleic acid) is a nucleotide analogue that raises the thermostability of nucleic acid duplexes by up to approximately 4 degrees C per inclusion. We have determined the NMR structure of a nonamer alpha-L-LNA:RNA hybrid with three alpha-L-LNA modifications. The geometry of this hybrid is intermediate between A- and B-type, all nucleobases partake in Watson-Crick base pairing and base stacking, and the global structure is very similar to that of the corresponding unmodified hybrid. The sugar-phosphate backbone is rearranged in the vicinity of the modified nucleotides. As a consequence, the phosphate groups following the modified nucleotides are rotated into the minor groove. It is interesting that the alpha-L-LNA:RNA hybrid, which has an elevation in melting temperature of 17 degrees C relative to the corresponding DNA:RNA hybrid, retains the global structure of this hybrid. To our knowledge, this is the first example of such a substantial increase in melting temperature of a nucleic acid analogue that does not act as an N-type (RNA) mimic. alpha-L-LNA:RNA hybrids are recognised by RNase H with subsequent cleavage of the RNA strand, albeit with slow rates. We attempt to rationalise this impaired enzyme activity from the rearrangement of the sugar-phosphate backbone of the alpha-L-LNA:RNA hybrid.  相似文献   

4.
Using a differential extraction procedure which had previously been shown to yield one nucleic acid fraction enriched in cytoplasmic RNA and another enriched in nuclear RNA, we have been able to isolate two polyadenylated RNA populations from microplasmodia of Physarum polycephalum. The poly(A)-containing RNA from the cytoplasmic-enriched fraction accounts for approximately 1.2% of the cytoplasmic nucleic acid, has a number-average nucleotide size of 1339+/- 39 nucleotides, and has been shown, in a protein-synthesizing system in vitro, to be capable of directing the synthesis of peptides which have also been shown to be synthesized in vivo by microplasmodia. The poly(A)-containing RNA from the nuclear-enriched fraction has a number-average nucleotide size of 1533 +/- 104 nucleotides and represents a mixture of cytoplasmic and nuclear adenylated RNA molecules. Based upon these observations, we have identified the polyadenylated RNA isolated from the fraction enriched in cytoplasmic nuclei acid as Physarum poly(A)-containing messenger RNA.  相似文献   

5.
The structure of a large nucleic acid complex formed by the 10-23 DNA enzyme bound to an RNA substrate was determined by X-ray diffraction at 3.0 A resolution. The 82-nucleotide complex contains two strands of DNA and two strands of RNA that form five double-helical domains. The spatial arrangement of these helices is maintained by two four-way junctions that exhibit extensive base-stacking interactions and sharp turns of the phosphodiester backbone stabilized by metal ions coordinated to nucleotides at these junctions. Although it is unlikely that the structure corresponds to the catalytically active conformation of the enzyme, it represents a novel nucleic acid fold with implications for the Holliday junction structure.  相似文献   

6.
The gene (iam) coding for isoamylase (glycogen 6-glucanohydrolase) of Pseudomonas amyloderamosa SB-15 was cloned. Its nucleotide sequence contained an open reading frame of 2313 nucleotides (771 amino acids) encoding a precursor of secreted isoamylase. The precursor contained a signal peptide of 26 amino acid residues at its amino terminus and three regions homologous with those conserved in alpha-amylases (1,4-alpha-D-glucan 4-glucanohydrolase) of species ranging from prokaryotes to eukaryotes. These homologous regions were also found in another debranching enzyme, pullulanase (pullulan 6-glucanohydrolase) from Klebsiella aerogenes. Sequences of the isoamylase also showed significant homology with those between positions 300 and the carboxyl terminus of pullulanase. The regions required for the specificity of isoamylase were discussed on the basis of a comparison of its amino acid sequence with those of alpha-amylases, cyclomaltodextrin glucanotransferases, and pullulanase.  相似文献   

7.
Phosphorylase b (1,4-alpha-D-glucan:1,6-alpha-D-glucan 6-alpha-glucosyltransferase, EC 2.4.1.1) can be specifically spin-labelled at a site essential for the catalytic action of the enzyme. A paramagnetic analogue of 1-fluoro-2,4-dinitrobenzene was synthesized and used as a dinitrophenylating agent. Reaction of phosphorylase b with the paramagnetic probe combined with the thiolysis method, leads to spin-labelling of a single -NH2 group (0.75 groups per subunit) with concomitant loss of 50% of the catalytic activity. Dinitrophenylation does not change the sedimentation profile of the enzyme. The ESR spectrum of modified phosphorylase b indicates that the attached label has rather limited segmental mobility and its environment is slightly hydrophobic. Small but subtle conformational changes induced by ligands in this critical site of the macromolecule can be directly detected by the spin-label. Also, sulfhydryl group modification of the spin-labelled enzyme with 5,5'-dithiobis(2-nitrobenzoic acid) has a pronounced effect on the resonance spectrum.  相似文献   

8.
Bacillus amyloliquefaciens alpha-amylase (1,4-alpha-D-glucan glucanohydrolase. EC 3.2.1.1), which is commercially supplied as 'Bacillus subtilis alpha-amylase' does not cross-react immunologically with B. subtilis alpha-amylase. This enzyme (from B. amyloliquefaciens) was cleaved by treatment with CNBr into seven fragments. Peptide A was selected for sequence determination. It is the longest one, containing 185 amino acids (i.e. approx. 50% of the total molecule) and connects to the hexapeptide of the N-terminus. Its primary structure was aligned by use of various proteolytic enzymes. The sequence of amino acids 181-184 is identical with that of amino acids 14-17 of the alpha-amylase isolated from B. subtilis (except that amino acid 183 is asparagine rather than aspartic acid).  相似文献   

9.
Poly (A) polymerase activity from cytoplasm and nuclei of 12-16-day-old mouse embryos has been partially purified by (NH4)2SO4 fractionation, DEAE-cellulose, phosphocellulose and tRNA-Sepharose affinity chromatography, and their properties have been compared. The nuclear and cytoplasmic enzymes exhibit similar chromatographic elution profiles, and similar biochemical and physical properties. Poly(A) polymerase has an absolute requirement for a divalent cation, ATP and an oligo- or polyribonucleotide primer. With tRNA, the divalent salt concentrations for optimum enzyme activity are 1 mM MnCl2 or 10 mM MgCl2. The enzyme activity with MnCl2 is 10-15-fold higher than that with MgCl2. The molecular weight of the native enzyme is about 65 000 and its sedimentation coefficient is around 4.5 S. The average chain length synthesized by the enzyme is between 10 and 13 nucleotides. The inhibitors of RNA polymerase do not affect poly (A) polymerase activity; however, some synthetic rifamycin SV derivatives are potent inhibitors of this enzyme.  相似文献   

10.
11.
When Escherichia coli 30-S ribosomal subunits are hydrolysed under mild conditions, two ribonucleoprotein fragments of unequal size are produced. Knowledge of the RNA sequences contained in these hydrolysis products was required for the experiments described in the preceding paper, and the RNA sub-fragments have therefore been examined by oligonucleotide analysis. Two well-defined small fragments of free RNA, produced concomitantly with the ribonucleoprotein fragments, were also analysed. The larger ribonucleoprotein fragment, containing predominantly proteins S4, S5, S8, S15, S16 (17) and S20, contains a complex mixture of RNA sub-fragments varying from about 100 to 800 nucleotides in length. All these fragments arose from the 5'-terminal 900 nucleotides of 16-S RNA, corresponding to the well-known 12-S fragment. No long-range interactions could be detected within this RNA region in these experiments. The RNA from the smaller ribonucleoprotein fragment (containing proteins S7, S9 S10, S14 and S19) has been described in detail previously, and consists of about 450 nucleotides near the 3' end of the 16-S RNA, but lacking the 3'-terminal 150 nucleotides. The two small free RNA fragments (above) partly account for these missing 150 nucleotides; both fragments arose from section A of the 16-S RNA, but section J (the 3'-terminal 50 nucleotides) was not found. This result suggests that the 3' region of 16-S RNA is not involved in stable interactions with protein.  相似文献   

12.
Simian-virus-40 large-T-antigen-catalyzed DNA and RNA unwinding reactions   总被引:3,自引:0,他引:3  
Simian virus 40 large T antigen is a helicase separating the complementary strands of double-stranded DNA in the presence of hydrolyzable ATP and of double-stranded RNA in the presence of non-ATP nucleotides (GTP, CTP or UTP). We have constructed partially single-stranded nucleic acid substrates consisting of RNA or DNA strands hydrogen bonded to either RNA or DNA complements. We found that ATP is utilized as a cofactor for the T-antigen-catalyzed unwinding reaction when the substrates contain overhanging single-stranded DNA, regardless of whether the double-stranded region is DNA or hybrid DNA.RNA. Conversely, non-ATP nucleotides are used when the overhanging single strand is RNA. Based on these and additional findings, we propose that the bound nucleic acid induces a conformational change in T antigen resulting in a proper orientation of both nucleic acid and nucleotide relative to the active center of the ATPase/helicase domain of the enzyme. The implications of our conclusion for the roles which T antigen may play in vivo are discussed.  相似文献   

13.
The catalytic mechanism of porcine pancreatic alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) has been examined by nuclear magnetic resonance (NMR) at subzero temperatures by using [1-13C]maltotetraose as substrate. Spectral summation and difference techniques revealed a broad resonance peak, whose chemical shift, relative signal intensity and time-course appearance corresponded to a beta-carboxyl-acetal ester covalent enzyme-glycosyl intermediate. This evidence supports a double-displacement covalent mechanism for porcine pancreatic alpha-amylase-catalyzed hydrolysis of glycosidic linkages, based on the presence of catalytic aspartic acid residues within the active site of this enzyme.  相似文献   

14.
Upon digestion of the complex formed from the 23-S ribosomal RNA and the 50-S ribosomal protein L24 of Escherichia coli, two fragments resistant to ribonuclease were recovered; these fragments contained RNA sections belonging to the 480 nucleotides at the 5' end of 23-S RNA. By determining the sequence of 70% of this latter region we were able to localise the sections which, in the presence of the protein, are resistant to ribonuclease. Our results suggest that the region encompassing the 480 nucleotides starting at the 9th nucleotide from the 5' end of 23-S RNA has a compact tertiary structure, which is stabilised by protein L24.  相似文献   

15.
When 25-S tobacco mosaic virus (TMV) protein aggregate and TMV RNA, which has been partially digested by T1 RNase, are mixed under conditions suitable for reconstitution, only a few RNA fragments are encapsidated. These fragments were isolated and purified by polyacrylamide gel electrophoresis. The sequence of the three main fragments, the longest of which (fragment 1) was estimated to contain 103 nucleotides, has been determined. The two smaller fragments are portions of the longer chain produced by an additional specific scission. Because of the great affinity of 25-S TMV protein for this nucleotide sequence, it will be referred to as the "specifically encapsidated RNA fragment". The occurrence of a "hidden break" in the sequence has been demonstrated: fragment 1, purified by electrophoresis on a polyacrylamide gel without 8 M urea, gives rise upon further electroporesis in the presence of urea to two new bands corresponding to the two halves of the molecule. A stable hair-pin secondary structure has been derived from the base sequence which can account for the specificity of action of the enzyme. Because of its properties, we have suggested elsewhere that the sequence of fragment 1 might correspond to the disk recognition site for reconstitution, which is known to be located at the 5' end of the intact RNA. But experiments with TMV RNA whose 5'-OH end has been radioactively phosphorylated with polynucleotide kinase show that this is not the case. Analysis of the amino acid coding capacity of the fragment has instead revealed that fragment 1 is a portion of the TMV coat protein cistron.  相似文献   

16.
The topography and the length of the non-ribosomal sequences present in 7-S RNA, the immediate precursor of 5.8-S ribosomal RNA, from the yeast Saccharomyces carlsbergensis were determined by analyzing the nucleotide sequences of the products obtained after complete digestion of 7-S RNA with RNase T1. The results show that 7-S RNA contains approximately 150 non-ribosomal nucleotides. The majority (90%) of the 7-S RNA molecules was found to have the same 5'-terminal pentadecanucleotide sequence as mature 5.8-S rRNA. The remaining 10% exhibited 5'-terminal sequences identical to those of 5.9-S RNA, which has the same primary structure as 5.8-S rRNA except for a slight extension at the 5' end [Rubin, G.M. (1974) Eur. J. Biochem. 41, 197--202]. These data show that the non-ribosomal nucleotides present in 7-S RNA are all located 3'-distal to the mature 5.8-S rRNA sequence. Moreover, it can be concluded that 5.9-S RNA is a stable rRNA rather than a precursor of 5.8-S rRNA. The 3'-terminal sequence of 5.8-S rRNA (U-C-A-U-U-UOH) is recovered in a much longer oligonucleotide in the T1 RNase digest of 7-S RNA having the sequence U-C-A-U-U-U-(C-C-U-U-C-U-C)-A-A-A-C-A-(U-U-C-U)-Gp. The sequences enclosed in brackets are likely to be correct but could not be established with absolute certainty. The arrow indicates the bond cleaved during processing. The octanucleotide sequence -A-A-A-C-A-U-U-C- located near the cleavage site shows a remarkable similarity to the 5'-terminal octanucleotide sequence of 7-S RNA (-A-A-A-C-U-U-U-C-). We suggest that these sequences may be involved in determining the specificity of the cleavages resulting in the formation of the two termini of 5.8-S rRNA.  相似文献   

17.
Hen oviduct N alpha-acetyltransferase is a ribonucleoprotein having 7 S RNA   总被引:1,自引:0,他引:1  
Hen oviduct N alpha-acetyltransferase was clarified to have a nucleic acid as an existing constituent by the following three results: (i) an ultraviolet absorption spectrum of the purified N alpha-acetyltransferase free of S-acetyl coenzyme A (Ac-CoA) had an absorption maximum at 260 nm. (ii) A nucleic acid band stained with ethidium bromide was detected on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. (iii) An ethidium bromide band co-migrated with a fluorescent band of the protein treated with N-(7-dimethylamino-4-methylcoumarinyl)maleimide, a reagent specific for thiol groups, on polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate. N alpha-Acetyltransferase lost its activity partially or completely by digestion with bovine pancreatic RNase A, Staphylococcus aureus nuclease, or proteinase K, showing that both the nucleic acid and the protein subunit were necessary for the enzyme activity. The nucleic acid component was identified as an RNA but not a DNA because the RNase T2 digest of the nucleic acid was composed of four 3'-ribomononucleotides and completely separated from 3'- and 5'-deoxyribomononucleotides on TLC. The chain length of the nucleic acid of 260 nucleotides estimated by formamide-polyacrylamide gel electrophoresis was calculated to be about 83,000 of the molecular weight. The contents of RNA (35.0%) and protein (65.0%) in N alpha-acetyltransferase determined on weight basis corresponded reasonably well to the contents of RNA (34.4%) and protein (65.6%) calculated based on the assumption that N alpha-acetyltransferase consisted of one molecule of 7 S RNA (Mr 83,000) and two identical Mr 79,000 protein subunits. The total molecular weight (241,000) of the holoenzyme calculated based on the above result was identical to the molecular weight (240,000) of N alpha-acetyltransferase estimated by Sepharose 6B gel filtration.  相似文献   

18.
DNA enzymes     
The past year has seen a coming-of-age in DNA enzyme research. Far from being laboratory curiosities, the activities of new DNA enzymes have broadened the known catalytic repertoire of nucleic acid enzymes, provided valuable insights into different mechanistic possiblities open to nucleic acid catalysts, and explored the importance for catalysis of native functionalities within DNA and RNA, as well as of a diversity of extrinsic cofactors. Thus, the first amino acid cofactor-utilizing DNA enzyme has been described, as well as DNA enzymes that cleave RNA without the assistance of any external cofactor. On the practical side, the most efficient RNA-cleaving nucleic acid enzyme described to date is a DNA enzyme.  相似文献   

19.
Fluorescence in situ hybridization (FISH) is a powerful technique that is used to detect and localize specific nucleic acid sequences in the cellular environment. In order to increase throughput, FISH can be combined with flow cytometry (flow-FISH) to enable the detection of targeted nucleic acid sequences in thousands of individual cells. As a result, flow-FISH offers a distinct advantage over lysate/ensemble-based nucleic acid detection methods because each cell is treated as an independent observation, thereby permitting stronger statistical and variance analyses. These attributes have prompted the use of FISH and flow-FISH methods in a number of different applications and the utility of these methods has been successfully demonstrated in telomere length determination, cellular identification and gene expression, monitoring viral multiplication in infected cells, and bacterial community analysis and enumeration. Traditionally, the specificity of FISH and flow-FISH methods has been imparted by DNA oligonucleotide probes. Recently however, the replacement of DNA oligonucleotide probes with nucleic acid analogs as FISH and flow-FISH probes has increased both the sensitivity and specificity of each technique due to the higher melting temperatures (T(m)) of these analogs for natural nucleic acids. Locked nucleic acid (LNA) probes are a type of nucleic acid analog that contain LNA nucleotides spiked throughout a DNA or RNA sequence. When coupled with flow-FISH, LNA probes have previously been shown to outperform conventional DNA probes and have been successfully used to detect eukaryotic mRNA and viral RNA in mammalian cells. Here we expand this capability and describe a LNA flow-FISH method which permits the specific detection of RNA in bacterial cells (Figure 1). Specifically, we are interested in the detection of small non-coding regulatory RNA (sRNA) which have garnered considerable interest in the past few years as they have been found to serve as key regulatory elements in many critical cellular processes. However, there are limited tools to study sRNAs and the challenges of detecting sRNA in bacterial cells is due in part to the relatively small size (typically 50-300 nucleotides in length) and low abundance of sRNA molecules as well as the general difficulty in working with smaller biological cells with varying cellular membranes. In this method, we describe fixation and permeabilzation conditions that preserve the structure of bacterial cells and permit the penetration of LNA probes as well as signal amplification steps which enable the specific detection of low abundance sRNA (Figure 2).  相似文献   

20.
Amylosucrase (sucrose:1,4-alpha-D-glucan 4-alpha-glucosyltransferase; EC 2.4.1.4) which mediates the transfer of the glucosyl moiety of sucrose to a growing alpha-1,4-glucan chain is a constitutive enzyme of Neisseria perflava. The products of enzymic action are insoluble glycogenlike polysaccharides and fructose, the latter being a competitive inhibitor of the enzyme (Ki=20 mM). The enzyme is extremely stable and appears to bind very tightly to its polymerized product. Properties of product-bound enzyme reflect those of the native complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号