首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reported recently that the choline phospholipid-binding proteins (BSP-A1/-A2, BSP-A3 and BSP-30-kDa) of bovine seminal plasma (BSP) stimulate cholesterol and choline phospholipid efflux from fibroblasts. In this study, we characterized the lipid efflux particles generated by BSP proteins. The density gradient ultracentrifugation of the efflux medium from radiolabeled fibroblasts incubated with BSP proteins showed a single peak of [3H]cholesterol between density (d) 1.12 and 1.14 g/ml, which is in the range of high-density lipoproteins. Size-exclusion chromatographic and immunoblot analysis revealed that the efflux particles have a large size equal to or bigger than very low-density lipoproteins and contained BSP proteins. Lipid analysis of density gradient and gel filtration fractions from efflux medium of simultaneously labeled fibroblasts ([3H]cholesterol and [3H]choline) incubated with BSP proteins showed that the efflux particles were homogeneous and composed of cholesterol and choline phospholipids. The lipid particles contained BSP proteins, cholesterol and choline phospholipids in molar ratio of 0.05:1.21:1, respectively. Agarose gel electrophoresis showed that the BSP-generated lipid particles had a γ migration pattern which is slower than low-density lipoproteins. The sonication of cholesterol and BSP proteins followed by gel filtration chromatographic analysis indicated no direct binding of cholesterol to BSP proteins. These results taken together indicate that BSP proteins induce a concomitant cholesterol and choline phospholipid efflux and generate large protein–lipid particles.  相似文献   

2.
Bovine seminal plasma (BSP) contains a family of phospholipid-binding proteins (BSP-A1/-A2, BSP-A3 and BSP-30-kDa, collectively called BSP proteins) that potentiate sperm capacitation induced by high-density lipoproteins. We showed recently that BSP proteins stimulate cholesterol efflux from epididymal spermatozoa and play a role in capacitation. Here, we investigated whether or not BSP proteins could stimulate cholesterol and phospholipid efflux from fibroblasts. Cells were radiolabeled ([3H]cholesterol or [3H]choline) and the appearance of radioactivity in the medium was determined in the presence of BSP proteins. Alcohol precipitates of bovine seminal plasma (designated crude BSP, cBSP), purified BSP-A1/-A2, BSP-A3 and BSP-30-kDa proteins stimulated cellular cholesterol and choline phospholipid efflux from fibroblasts. Efflux mechanistic differences were observed between BSP proteins and other cholesterol acceptors. Preincubation of BSP-A1/-A2 proteins with choline prevented cholesterol efflux, an effect not observed with apolipoprotein A-I. Also, the rate of BSP-induced efflux was rapid during the first 20 min, but leveled off thereafter in contrast to a relatively slow, but constant, rate of cholesterol efflux mediated by apolipoprotein A-I, apolipoprotein A-I-containing reconstituted lipoproteins (LpA-I) and high-density lipoproteins. These results indicate that fibroblasts are a good cell model to study the mechanism of lipid efflux mediated by BSP proteins.  相似文献   

3.
Several studies have shown that sperm capacitation was accompanied by a change in the lipid composition of the sperm membrane. In cattle, the major proteins of (bovine)seminal plasma (BSP proteins: BSP-A1/A2, BSP-A3, and BSP-30-kDa) potentiate sperm capacitation induced by high-density lipoprotein (HDL). Our recent studies indicate that these proteins and HDL stimulate sperm cholesterol efflux during capacitation. In order to gain more insight into the mechanisms of BSP-mediated sperm capacitation, we studied whether or not BSP proteins induce phospholipid efflux from epididymal sperm membrane. By direct determination of choline phospholipids on unlabeled epididymal sperm, the results show that sperm incubated in the presence of BSP-A1/A2 protein lost 34.4% of their choline phospholipids compared with the control (11.5%). Similar results were obtained using labeled epididymal sperm. Labeling was carried out by incubating washed epididymal sperm for 1 h with medium containing [(3)H]palmitic acid. The majority of the label was incorporated into sperm phosphatidylcholine. Studies of sperm phospholipid efflux were done by incubating the labeled sperm with purified BSP proteins, delipidated BSA, or bovine seminal ribonuclease (RNase, control protein). When labeled ([(3)H]phospholipid) epididymal sperm were incubated with BSP proteins (20-120 microg/ml) for 8 h, the sperm lost [(3)H]phospholipid in a dose-dependent manner (maximum efflux of approximately 30%). After the incubation with BSP proteins, the efflux particles were fractionated by size-exclusion chromatography. Analysis of the fractions obtained showed that the [(3)H]phospholipid was associated with BSP proteins. BSA (6 mg/ml) stimulated a specific phospholipid efflux of approximately 22%. In contrast, bovine RNase (120 microg/ml) did not stimulate phospholipid efflux. These results indicate that BSP proteins participate in the sperm cholesterol and phospholipid efflux that occurs during capacitation.  相似文献   

4.
For sperm preservation, semen is generally diluted with extender containing egg yolk (EY), but the mechanisms of sperm protection by EY are unclear. The major proteins of bull seminal plasma (BSP proteins: BSP-A1/A2, BSP-A3, and BSP-30-kDa) bind to sperm surface at ejaculation and stimulate cholesterol and phospholipid efflux from the sperm membrane. Since EY low-density lipoprotein fraction (LDF) interacts specifically with BSP proteins, it is proposed that the sequestration of BSP proteins in seminal plasma by EY-LDF represents the major mechanism of sperm protection by EY. In order to gain further insight into this mechanism, we investigated the effect of seminal plasma, EY, and EY-LDF on the binding of BSP proteins to sperm and the lipid efflux from the sperm membrane. As shown by immunodetection, radioimmunoassays, and lipid analysis, when semen was incubated undiluted or diluted with control extender (without EY or EY-LDF), BSP proteins bound to sperm in a time-dependent manner, and there is a continuous cholesterol and phospholipid efflux from the sperm membrane. In contrast, when semen was diluted with extender containing EY or EY-LDF, there was 50%-80% fewer BSP proteins associated with sperm and a significant amount of lipid added to sperm membrane during incubation. In addition, sperm function analysis showed that the presence of EY or EY-LDF in the extender preserved sperm motility. These results show that LDF is the constituent of EY that prevents binding of the BSP proteins to sperm and lipid efflux from the sperm membrane and is beneficial to sperm functions during sperm preservation.  相似文献   

5.
Our recent results indicated that the major proteins of bovine seminal plasma (collectively called BSP proteins) stimulate cholesterol efflux from fibroblasts and that this process shows many differences compared to the efflux induced by apolipoprotein A-I (apoA-I)-containing lipoproteins. The present study was undertaken to investigate the BSP-mediated efflux mechanism. Compared to the slow and constant rate of cholesterol efflux induced by apoA-I-containing lipoproteins, the BSP proteins stimulated a rapid efflux that gradually reached a plateau. The addition of purified BSP proteins after the establishment of the plateau resulted in a further cholesterol efflux indicating that cellular cholesterol was still available for efflux. Incubation of unlabeled fibroblast culture with the spent medium containing BSP-generated lipid ([(3)H]cholesterol) particles obtained after the establishment of the plateau did not result in any cholesterol influx. Therefore, the plateau did not correspond to an equilibrium of the radiolabel between the medium and the cells but rather to a saturation of the efflux particles with cholesterol. Numerous studies have indicated that the cholesterol efflux induced by apoA-I-containing lipoproteins involves cell-surface receptor, caveolae and intracellular cholesterol mobilization. Therefore, we investigated these characteristics for the BSP-mediated cholesterol efflux. Binding of BSP proteins to cells (evaluated by immunoblotting) reached saturation rapidly and remained constant thereafter. However, after several washings the cell-bound BSP proteins were unable to promote significant cholesterol efflux. Both results indicate no correlation of cholesterol efflux with cell binding. Moreover, in comparison to apoA-I-mediated cholesterol efflux, BSP-mediated efflux was not abolished at temperatures below 22 degrees C indicating that the BSP-induced cholesterol efflux does not involve intracellular cholesterol mobilization. High-density lipoprotein- and apoA-I-mediated cholesterol efflux was inhibited by preincubating fibroblasts with progesterone, whereas the cholesterol efflux by BSP proteins was not, indicating that cell-surface caveolae do not participate in BSP-mediated cholesterol efflux. Our results indicate that the mechanism of cholesterol efflux by BSP proteins is unidirectional and is strikingly different from that mediated by apoA-I-containing lipoproteins.  相似文献   

6.
Earlier work from this laboratory showed that enrichment of cells with free cholesterol enhanced the efflux of phospholipid to lipoprotein acceptors, suggesting that cellular phospholipid may contribute to high density lipoprotein (HDL) structure and the removal of sterol from cells. To test this hypothesis, we examined the efflux of [3H]cholesterol (FC) and [32P]phospholipid (PL) from control and cholesterol-enriched fibroblasts to delipidated apolipoproteins. The percentages of [3H]cholesterol and [32P]phospholipid released from control cells to human apolipoprotein A-I were 2.2 +/- 0.5%/24 h and 0.8 +/- 0.1%/24 h, respectively. When the cellular cholesterol content was doubled, efflux of both lipids increased substantially ([3H]FC efflux = 14.6 +/- 3.6%/24 h and [32P]PL efflux = 4.1 +/- 0.3%/24 h). Phosphatidylcholine accounted for 70% of the radiolabeled phospholipid released from cholesterol-enriched cells. The cholesterol to phospholipid molar ratio of the lipid released from cholesterol-enriched cells was approximately 1. This ratio remained constant throughout an incubation time of 3 to 48 h, suggesting that there was a coordinate release of both lipids. The concentrations of apoA-I, A-II, A-IV, E, and Cs that promoted half-maximal efflux of phospholipid from cholesterol-enriched fibroblasts were 53, 30, 68, 137, and 594 nM, respectively. With apoA-I and A-IV, these values for half-maximal efflux of phospholipid were identical to the concentrations that resulted in half-maximal efflux of cholesterol. Agarose gel electrophoresis of medium containing apoA-I that had been incubated with cholesterol-enriched fibroblasts revealed a particle with alpha to pre-beta mobility. We conclude that the cholesterol content of cellular membranes is an important determinant in the ability of apolipoproteins to promote lipid removal from cells. We speculate that apolipoproteins access cholesterol-phosphatidylcholine domains within the plasma membrane of cholesterol-enriched cells, whereupon HDL is generated in the extracellular compartment. The release of cellular lipid to apolipoproteins may serve as a protective mechanism against the potentially damaging effects of excess membrane cholesterol.  相似文献   

7.
Soluble CD14 (sCD14), a 55-kDa glycoprotein found in plasma, has been shown to act as a shuttle for bacterial LPS and phospholipids, transporting LPS and phospholipid monomers from LPS aggregates or liposomes to high density lipoprotein particles. sCD14 has also been shown to mediate the transport of LPS and phosphatidylinositol into cells. Here we show that sCD14 mediates not only the influx but also the efflux of cellular phospholipids. Addition of sCD14 enhanced efflux of cellular phospholipids labeled with [(3)H]palmitic acid, [(3)H]oleic acid, or [(3)H]choline chloride from differentiated THP-1 monocytic cells. Efflux was dependent on the concentration of sCD14 added and was essentially complete in 30 min. The role of membrane-bound CD14 (mCD14) in lipid efflux was assessed using matched pairs of cell lines that express or fail to express this protein. While efflux was very dependent on mCD14 in U373 cells, it was not dependent on mCD14 in Chinese hamster ovary cells, suggesting a role for additional cellular proteins in determining the pathway of phospholipid efflux. A deletion mutant of sCD14 lacking the LPS binding site had less ability to efflux phospholipids than intact sCD14, suggesting that this site is needed for CD14 to serve in phospholipid transport. [(3)H]Palmitate-labeled lipids released by sCD14 were precipitated with anti-CD14 then analyzed by HPLC. Phosphatidylcholine was the dominant phospholipid exported and bound to sCD14. These results demonstrate that sCD14 mediates efflux of phospholipids from cells and suggest that sCD14 contributes to phospholipid transport in blood.  相似文献   

8.
Bovine seminal plasma (BSP) contains a family of novel phospholipid-binding proteins (BSP-A1/-A2, BSP-A3, and BSP-30-kDa; collectively called BSP proteins) that potentiate sperm capacitation induced by heparin or by serum high-density lipoprotein (HDL). BSP proteins stimulate lipid efflux from sperm that may occur during the early events of capacitation. Here, we investigated the role of BSP proteins, bovine follicular fluid (FF), and bovine follicular fluid HDL (FF-HDL) in sperm capacitation. FF and FF-HDL alone stimulated epididymal sperm capacitation (19.5% +/- 0.8% and 18.2% +/- 2.8%, respectively, control, 9.0% +/- 1.9%) that was increased by preincubation with BSP-A1/-A2 proteins (30.2% +/- 0.4% and 30.9% +/- 1.5%, respectively). In contrast, lipoprotein-depleted follicular fluid (LD-FF) alone was ineffective, and a preincubation with BSP-A1/-A2 proteins was necessary before sperm capacitation was stimulated (up to 22.8% +/- 1.4%). The interaction of BSP proteins with FF components was analyzed using ultracentrifugation, Lipo-Gel electrophoresis, SDS-PAGE, and gel filtration. We established that the BSP proteins interact with factors present in FF including FF-HDL. Additionally, we obtained evidence that BSP proteins, found associated with FF-HDL, were released from the sperm membrane during capacitation. These results confirm that the BSP proteins and the FF-HDL play a role in sperm capacitation.  相似文献   

9.
A family of proteins designated BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa, collectively called BSP (bovine seminal plasma) proteins, constitute the major protein fraction of bull seminal plasma. BSP proteins can stimulate sperm capacitation by inducing cholesterol and phospholipid efflux from sperm. Boar seminal plasma contains one homologous protein of the BSP family, named pB1; however, its physiological role is still unknown. In the current study, we report a novel method to purify pB1 from boar seminal plasma by chondroitin sulfate B-affinity chromatography and reverse-phase-high performance liquid chromatography. We also studied the effect of pB1, BSP-A1/-A2, and whole boar seminal plasma on boar sperm capacitation. Boar epididymal sperm were washed, preincubated in noncapacitating medium containing pB1 (0, 2.5, 5, 10 or 20 microg/ml), BSP-A1/-A2 (0 or 20 microg/ml) proteins, or whole seminal plasma (0, 250, 500, or 1000 microg/ml), then washed and incubated in capacitating medium. Acrosomal integrity was assessed by chlortetracycline staining. The status of sperm capacitation was evaluated by the capacity of sperm to undergo the acrosome reaction initiated by the addition of the calcium ionophore, A23187. The pB1 and BSP-A1/-A2 proteins increased epididymal sperm capacitation as compared with control (sperm preincubated without proteins). This effect reached a maximum level at 10 microg/ml pB1 and at 20 microg/ml BSP-A1/-A2 (2.3- and 2.2-fold higher than control, respectively). Whole boar seminal plasma did not induce sperm capacitation. In addition, pB1 bound to boar epididymal sperm and was lost during capacitation. These results indicate that BSP proteins and their homologs in other species induce sperm capacitation in a similar way.  相似文献   

10.
Over the past 60 years, egg yolk (EY) has been routinely used in both liquid semen extenders and those used to cryopreserve sperm. However, the mechanism by which EY protects sperm during liquid storage or from freezing damage is unknown. Bovine seminal plasma contains a family of proteins designated BSP-A1/-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins). These proteins are secretory products of seminal vesicles that are acquired by sperm at ejaculation, modifying the sperm membrane by inducing cholesterol efflux. Because cholesterol efflux is time and concentration dependent, continuous exposure to seminal plasma (SP) that contains BSP proteins may be detrimental to the sperm membrane, which may adversely affect the ability of sperm to be preserved. In this article, we show that the BSP proteins bind to the low-density fraction (LDF), a lipoprotein component of the EY extender. The binding is rapid, specific, saturable, and stable even after freeze-thawing of semen. Furthermore, LDF has a very high capacity for BSP protein binding. The binding of BSP proteins to LDF may prevent their detrimental effect on sperm membrane, and this may be crucial for sperm storage. Thus, we propose that the sequestration of BSP proteins of SP by LDF may represent the major mechanism of sperm protection by EY.  相似文献   

11.
The purpose of this work was to determine whether the changes induced by dietary manipulations in the chemical composition of high-density lipoproteins (HDL) (particularly phospholipid fatty acid composition) modified their capacity to promote [3H]cholesterol efflux from cultured fibroblasts. Plasma HDL were obtained from subjects fed for six successive long periods on diets consisting of one predominant fat: peanut oil, corn oil, olive oil, soybean oil, low erucic acid rapeseed oil or milk fats. The [3H]cholesterol efflux from cells in the presence of plasma HDL was studied by means of normal adult human fibroblasts in culture. The [3H]cholesterol efflux from fibroblasts appeared to be independent of the overall composition of HDL and of the degree of saturation of the HDL phospholipid fatty acids, but it was correlated with the phospholipid fatty acid chain length. The [3H]cholesterol efflux from fibroblasts is highly and positively correlated with the sum of the HDL phospholipid C20, C22, C24 fatty acids, and negatively correlated with the sum of the HDL phospholipid C18 fatty acids.  相似文献   

12.
A family of proteins designated BSP-A1, BSP-A2, BSP-A3 and BSP-30 kDa (collectively called BSP proteins for Bovine Seminal Plasma proteins) constitute the major protein fraction in the bull seminal plasma. These proteins interact with choline phospholipids on the sperm surface and play a role in the membrane stabilization (decapacitation) and destabilization (capacitation) process. Homologous proteins have been isolated from boar and stallion seminal plasma. In the current study we report the isolation and preliminary characterization of homologous proteins from goat seminal plasma. Frozen semen (-80°C) was thawed and centrifuged to remove sperm. The proteins in the supernatant were precipitated by the addition of cold ethanol. The precipitates were dissolved in ammonium bicarbonate and lyophilised. The lyophilised proteins were dissolved in phosphate buffer and loaded onto a gelatin-agarose column, which was previously equilibrated with the same buffer. The column was successively washed with phosphate buffer, with phosphate buffer saline and with 0.5 M urea in phosphate buffer saline to remove unadsorbed proteins, and the adsorbed proteins were eluted with 5 M urea in phosphate buffer saline. Analysis of pooled, dialysed and lyophilised gelatin-agarose adsorbed protein fraction by SDS-PAGE indicated the presence of four protein bands that were designated GSP-14 kDa, GSP-15 kDa, GSP-20 kDa and GSP-22 kDa (GSP, Goat Seminal Plasma proteins). Heparin-affinity chromatography was then used for the separation of GSP-20 and -22 kDa from GSP-14 and -15 kDa. Finally, HPLC separation permitted further isolation of each one from the other. Amino acid sequence analysis of these proteins indicated that they are homologous to BSP proteins. In addition, these BSP homologs bind to hen's egg-yolk low-density lipoproteins. These results together with our previous data indicate that BSP family proteins are ubiquitous in mammalian seminal plasma, exist in several forms in each species and possibly play a common biological role.  相似文献   

13.
Since phospholipids are major components of all serum lipoproteins, the role of phospholipid biosynthesis in lipoprotein secretion from cultured rat hepatocytes has been investigated. In liver, phosphatidylcholine is made both by the CDP-choline pathway and by the methylation of phosphatidylethanolamine, which in turn is derived from both serine (via phosphatidylserine) and ethanolamine (via CDP-ethanolamine). Monolayer cultures of rat hepatocytes were incubated in the presence of [methyl-3H]choline, [1-3H] ethanolamine, or [3-3H]serine. The specific radioactivity of the phospholipids derived from each of these precursors was measured in the cells and in the secreted lipoproteins of the cultured medium. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine derived from [1-3H]ethanolamine were markedly lower (approximately one-half and less than one-tenth, respectively) in the secreted phospholipids than in the cellular phospholipids. Thus, ethanolamine was not an effective precursor of the phospholipids in lipoproteins. On the contrary, the specific radioactivity of phosphatidylcholine made from [methyl-3H]choline was approximately equal in cells and lipoproteins. In addition, over the first 4 h of incubation with [3-3H]serine, the specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were significantly higher in the lipoproteins than in the cells. These data indicate that there is not a random and homogeneous labeling of the phospholipid pools from the radioactive precursors. Instead, specific pools of phospholipids are selected, on the basis of their routes of biosynthesis, for secretion into lipoproteins.  相似文献   

14.
Human smooth muscle (SM) cells derived from vena saphena magna, aorta abdominalis and arteria mamaria were grown in culture under 40 or 145 mmHg oxygen partial pressure (pO2) and their lipid metabolism studied. Esterification of the cellular [3H]cholesterol was higher by 2.5-fold in artery derived than in vein-derived cells and was slightly higher in cultures exposed to 145 mmHg than to 40 mmHg pO2. Cholesterol efflux in the presence of high density lipoprotein (HDL) in the incubation medium was higher in artery-derived than vein-derived cells. Apolipoprotein (apo) AI also supported cholesterol efflux to a higher extent in artery than in vein-derived cells. Cholesterol efflux in the presence of apo AI was accompanied by a decrease of 50% in cellular [3H]cholesteryl ester in both cell types. SM cultures exposed to [3H]choline incorporated about 90% of the radioactivity to phosphatidylcholine (PC) and 10% to sphingomyelin (SPM). During 5 days exposure to [3H]choline, 10 to 15% and 20 to 30% of the newly synthesized PC and SPM, respectively, were released by vein-derived cells into the incubation medium. The relative amount of SPM of the total radioactive phospholipids released by vein-derived cultures was significantly higher in cultures growing under 40 mmHg than 145 mmHg pO2 reaching a value of up to 33% of the radioactive phospholipids in the incubation medium. HDL was shown to serve as an acceptor for phospholipids released by both vein and artery-derived SM cells, while free apo AI supported phospholipid efflux in artery but not in vein-derived SM cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Cholesterol and phospholipid efflux from cultured cells   总被引:2,自引:0,他引:2  
The removal of phospholipids and cholesterol from tissues is the major mechanism mediating the initial assembly of high density lipoproteins (HDL), as well as being the main reason HDL are thought to protect against atherosclerosis. Investigations of the mechanisms of HDL assembly and testing of novel HDL-raising agents typically involve assays to determine phospholipid and/or cholesterol removal or "efflux" from cultured cells. The purpose of this chapter is to describe experimental protocols that can be used in the determination of cholesterol and phospholipid efflux from cultured cells by HDL apolipoproteins for the formation of new HDL particles, and the testing of novel HDL-raising therapies in vitro. A protocol is also provided for determining the size and nature of HDL particles formed in cell-conditioned medium using two-dimensional gel electrophoresis.  相似文献   

16.
A group of similar proteins, namely BSP-A1, BSP-A2, BSP-A3, and BSP-30-kDa (collectively called BSP proteins), are the major proteins found in bovine seminal fluid. These proteins are secretory products of seminal vesicles, and they bind to spermatozoa upon ejaculation, suggesting that there are binding sites for these proteins on the spermatozoa. It was of interest to characterize these binding sites on spermatozoa which may help in the elucidation of the biological function of BSP proteins. The binding sites on spermatozoa are resistant to protease or acid treatment and are heat-stable but extractable with organic solvents. The solvent-extractable material, when coated on plastic microtitration wells, binds radiolabeled BSP proteins thus indicating the lipid nature of the BSP binding sites on spermatozoa. We investigated the specificity of interaction of BSP proteins with lipids using liposomes of phospholipids, solid-phase, and thin-layer chromatography-overlay techniques. Results showed that BSP-A1, -A2, and -A3 proteins bound specifically to those phospholipids which contain the phosphorylcholine group. In contrast, BSP-30-kDa protein preferentially bound to phospholipids containing the phosphorylcholine moiety but also interacted with phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, and cardiolipin. Furthermore, of those lipids that were extracted from spermatozoa, only phospholipids which contain the phosphorylcholine moiety bound radiolabeled BSP proteins. These data suggest that the BSP protein binding sites on spermatozoa are phospholipids. We propose that this specific interaction plays an important role in the membrane modification of spermatozoa that occurs during capacitation and/or acrosome reaction.  相似文献   

17.
High-density lipoprotein (HDL) apolipoproteins remove excess cholesterol from cells by an active transport pathway that may protect against atherosclerosis. Here we show that treatment of cholesterol-loaded human skin fibroblasts with phospholipid transfer protein (PLTP) increased HDL binding to cells and enhanced cholesterol and phospholipid efflux by this pathway. PLTP did not stimulate lipid efflux in the presence of albumin, purified apolipoprotein A-I, and phospholipid vesicles, suggesting specificity for HDL particles. PLTP restored the lipid efflux activity of mildly trypsinized HDL, presumably by regenerating active apolipoproteins. PLTP-stimulated lipid efflux was absent in Tangier disease fibroblasts, induced by cholesterol loading, and inhibited by brefeldin A treatment, indicating selectivity for the apolipoprotein-mediated lipid removal pathway. The lipid efflux-stimulating effect of PLTP was not attributable to generation of prebeta HDL particles in solution but instead required cellular interactions. These interactions increased cholesterol efflux to minor HDL particles with electrophoretic mobility between alpha and prebeta. These findings suggest that PLTP promotes cell-surface binding and remodeling of HDL so as to improve its ability to remove cholesterol and phospholipids by the apolipoprotein-mediated pathway, a process that may play an important role in enhancing flux of excess cholesterol from tissues and retarding atherogenesis.  相似文献   

18.
Uptake of endogenous cholesterol by a synthetic lipoprotein   总被引:4,自引:0,他引:4  
The addition of cholesterol-poor phospholipid liposomes to canine plasma in vivo and in vitro substantially alters the distribution of phospholipids, apoproteins, and, especially, cholesterol. In vivo, intravenously injected phospholipid liposomes remain discrete particles, which are readily distinguished from the normally occurring lipoproteins by their buoyant density and electrophoretic mobility. They acquire unesterified cholesterol from endogenous sources, thereby producing an acute rise in the concentration of this sterol in plasma. The liposomes also accumulate endogenous proteins, one of which is identified as apolipoprotein A-I. In vitro, phospholipid liposomes incubated with plasma acquire unesterified cholesterol and apolipoprotein A-I at the expense of high-density lipoproteins (HDL), the major carrier of cholesterol in normal canine plasma. In exchange, the HDL particles are enriched in phospholipids and become larger. At sufficiently high concentrations, the liposomes nearly completely deplete HDL of its unesterified cholesterol. Thus, there are generated two types of particles, both rich in apolipoprotein A-I and phospholipid, but one (modified HDL) containing mainly esterified cholesterol in its core and the other (modified liposomes) containing mainly unesterified cholesterol at its surface. It is concluded that phospholipid liposomes produce important changes in the distribution of lipids and protein in canine plasma, particularly at the expense of HDL. These changes appear to favor the mobilization of tissue cholesterol into the plasma, and may have application to atherosclerosis.  相似文献   

19.
High-density lipoprotein (HDL) apolipoproteins remove excess cholesterol from cells by an active transport pathway that may protect against atherosclerosis. Here we show that treatment of cholesterol-loaded human skin fibroblasts with phospholipid transfer protein (PLTP) increased HDL binding to cells and enhanced cholesterol and phospholipid efflux by this pathway. PLTP did not stimulate lipid efflux in the presence of albumin, purified apolipoprotein A-I, and phospholipid vesicles, suggesting specificity for HDL particles. PLTP restored the lipid efflux activity of mildly trypsinized HDL, presumably by regenerating active apolipoproteins. PLTP-stimulated lipid efflux was absent in Tangier disease fibroblasts, induced by cholesterol loading, and inhibited by brefeldin A treatment, indicating selectivity for the apolipoprotein-mediated lipid removal pathway. The lipid efflux-stimulating effect of PLTP was not attributable to generation of preβ HDL particles in solution but instead required cellular interactions. These interactions increased cholesterol efflux to minor HDL particles with electrophoretic mobility between α and preβ. These findings suggest that PLTP promotes cell-surface binding and remodeling of HDL so as to improve its ability to remove cholesterol and phospholipids by the apolipoprotein-mediated pathway, a process that may play an important role in enhancing flux of excess cholesterol from tissues and retarding atherogenesis.  相似文献   

20.
Lipid microemulsions were prepared by sonication of mixtures of cholesteryl ester, triacylglycerol, phosphatidylcholine and cholesterol in aqueous dispersions and were purified by gel filtration. The resulting emulsion particles were characterized by differential scanning calorimetry, electron microscopy and analytical gel filtration and were shown to have the size and general organization of low-density lipoprotein. The lipid microemulsions were used as protein-free plasma lipoprotein models for studies of the receptor-independent transfer of lipids to human fibroblasts in culture. The transfer rate of [3H]cholesterol increased with the donor concentration and with the molar ratio between cholesterol and phosphatidylcholine in the donor particles. A maximal transfer value of 1 nmol per mg protein per h was obtained for cholesterol/phosphatidylcholine 1:1 particles. There was a profound temperature effect on the cholesterol transfer. The effect of altering the core lipid of the emulsion particles on the [3H]cholesterol transfer rate was small giving a somewhat higher rate with cholesteryl oleate and cholesteryl stearate than with cholesteryl linoleate. Addition of trioleoylglycerol to the cholesteryl ester core had no effect on the transfer rate. The transfer rate of palmitoyl[14C]oleoylphosphatidylcholine was found to be about 1/5 of that obtained for [3H]cholesterol. About 50% of the cell-associated [14C]cholesteryl oleate was found in the trypsin-releasable pool, while 25% was internalized by the cells at a rate of 0.06 nmol X mg-1 X h-1. Trioleoylglycerol was internalized at the same rate as the cholesteryl ester. Our data suggest that the lipoprotein lipid composition may play a role in the receptor-independent cellular uptake of cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号