首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
N,N′-dicyclohexylcarbodiimide (DCCD) was found to uncouple phosphorylation from oxidation with succinate and NAD+-linked substrates in the system from Mycobacterium phlei. However, in contrast to the effect of this agent in mammalian mitochondria, DCCD was found to stimulate oxidation with succinate as an electron donor and to inhibit the oxidation of NAD+-linked substrates. Furthermore, in the M. phlei system DCCD was found to inhibit the membrane bound latent ATP-ase but had no effect on this activity when the latent ATPase was removed from the membrane vesicles. Reconstitution with the fraction containing latent ATPase activity and the membrane vesicles resulted in inhibition of latent ATPase by DCCD. Studies of the effect of DCCD on the resolved system indicated that DCCD may be associated with membrane vesicles or causes secondary changes in conformation of membrane vesicles. Although DCCD inhibited membrane bound ATPase it did not prevent the addition of the solubilized ATPase to the membrane vesicles. DCCD was found to have no effect on purified succinic dehydrogenase activity but stimulated this activity in the electron transport particles.  相似文献   

3.
The purified cytochrome b-c1 complex of Rhodopseudomonas sphaeroides has two b cytochromes distinguishable by optical, thermodynamic and electron paramagnetic resonance criteria (gz values are approximately equal to 3.75 and approximately equal to 3.4). EPR features typical of a Rieske iron sulfur cluster (g values of 2.03 1.90 and 1.81) and a c1 type cytochrome (g approximately equal to 3.4) were also observed. The b and c1 cytochromes were individually purified from the complex. The cytochrome c1 retained its native EPR spectrum. The b cytochrome lost over 90% of the intensity from the 'b566 type' heme site (g approximately equal to 3.75), while the 'b561 type' heme site (g approximately equal to 3.4) retained its native EPR spectrum.  相似文献   

4.
The effects of nitric oxide (NO) on electron transfer were studied with a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. NO inhibited the oxidation of cytochrome c induced by continuous illumination in intact cells. NO inhibited the re-reduction of cytochrome c, the slow phase of the carotenoid bandshift, and the oxidation of cytochrome b after a flash illumination, suggesting that NO inhibited the photosynthetic cyclic electron transfer through the cytochrome b-c 1 region. NO also inhibited the nitrite (NO 2 - ) and NO reductions with succinate as the electron donor in intact cells, but did not inhibit the NO 2 - and NO reductions in chromatophore membranes with ascorbate and phenazine methosulfate as the electron donors. NO reversibly inhibited the ubiquinol: cytochrome c oxidoreductase of the membranes, suggesting that NO inhibited the electron transfer through the cytochrome b-c 1 region and that the cytochrome b-c 1 complex also was involved in the electron transport in both NO 2 - and NO reductions. The catalytic site of NO reduction was distinct from the inhibitory site of NO.Abbreviations UHDBT 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole - UHNQ 3-undecyl-2-hydroxy-1,4-naphthoquinone - MOPS 3-(N-morpholino)propane-sulfonic acid - PMS phenazine methosulfate - DCIP 2,6-dichlorophenol indophenol - DDC diethyl-dithiocarbamate  相似文献   

5.
The effect of antimycin on the ubiquinone cytochrome b-c2 (Q b-c2) oxidoreductase of the photosynthetic bacterium Rhodopseudomonas sphaeroides has been studied under controlled oxidation-reduction potential (Eh) conditions by equilibrium measurements and by rapid kinetic analysis of single turnover flash.induced electron and proton translocations. 1. Antimycin shifts the alpha-band of ferro b50 (lambda max 560 nm) by 1 to 2 nm toward the red but has no apparent effect on the equilibrium oxidation-reduction midpoint potential of the cytochrome. 2. This red shift is proportional to the antimycin added until a "titer" of 0.7 +/- 0.1 antimycin per reaction center (RC) is approached. With a similar titer antimycin essentially abolishes the following millisecond reactions activated by saturating single turnover flashes: reduction of ferri c2, oxidation of ferro b, Phase III of the membrane-potential-indicating band shift of endogenous carotenoid pigments, and the uptake of 1 of the 2 protons taken up per electron transferred. Such titrations indicate that the binding (KD approximately 10(-9) m) and mode of inhibition of antimycin are noncooperative and are independent of the membrane's coupling status and of the pH and Eb over the range in which electron transport is operative. 3. In the presence of excess antimycin a partial recovery of ferri c2 reduction is seen when the intensity of the flash is diminished, but only at Eh values such that Z (a special quinone serving as reductant for ferri c2) is reduced but b50 is oxidized before activation. These results are consistent with the following model. Each Q b-c2 oxidoreductase complex includes one antimycin binding site, one b50, and one Z. These complexes and the c2 . RC complexes, present in an 0.7:1 ratio, are to some degree mobile with respect to each other. Ferri b50 can be reduced either via the quinones of the RC or via Z in a reaction also involving c2. The former route is kinetically dominant in the presence of antimycin, but the latter route is the means for "oxidant-induced reduction" and depends on the collisional interaction of the oxidoreductase and c2 . RC complexes. Antimycin interferes with neither of these two routes but does inhibit the oxidation of ferro b50; all the other inhibitory effects are consequent on this.  相似文献   

6.
M J Nalecz  R P Casey  A Azzi 《Biochimie》1983,65(8-9):513-518
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstituted mitochondrial cytochrome b-c1 complex. In proteoliposomes containing b-c1 complex DCCD inhibits equally electron flow and proton translocation catalyzed by the enzyme. In both isolated and reconstituted systems the inhibitory effect is accompanied by structural alterations in the polypeptide pattern of the enzyme consistent with cross-linking between subunits V and VII. The kinetics of inhibition of enzymic activity correlates with that of the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C] DCCD to both isolated and reconstituted enzyme was also observed, though it was not correlated kinetically with the inhibition.  相似文献   

7.
Myxothiazol, an inhibitor of the ubiquinol oxidase site of the ubiquinol:cytochrome c2 oxidoreductase complex, has been shown in the present work to inhibit a part of the electrogenic process indicated by phase III of the carotenoid change, in addition to the part of the change inhibited by antimycin. This finding shows that there is an antimycin-insensitive, but myxothiazol-sensitive portion of the slow phase, which indicates the existence of an electrogenic event within the ubiquinol:cytochrome c2 oxidoreductase complex, in addition to that linked to oxidation of cytochrome b-561 which has been previously characterized. Redox titrations show that the appearance of the new electrogenic step is correlated with the amount of cytochrome b-561 available in the oxidized form before the flash. The rate of the antimycin-insensitive and myxothiazol-sensitive portion of the carotenoid change correlates well with the rate of reduction of cytochrome b-561. No carotenoid change associated with reduction of cytochrome b-566 was seen. These findings suggest that the newly identified electrogenic process is linked to electron transfer between cytochrome b-566 and b-561. Calculations of the contribution of this new electrogenic step to the total electrogenic event within the complex show that electrons passing from cytochrome b-566 to cytochrome b-561 pass about 35-50% of the distance across the whole membrane.  相似文献   

8.
9.
The EPR spectra of cytochrome b-562 isolated from the cytochrome b-c1 complex of Rhodopseudomonas sphaeroides were measured at liquid helium temperature. The purified cytochrome b-562 gives a high spin signal at g = 6.0. Anaerobic titration of this signal confirmed the presence of two redox components with Em = 40 and -110 mV at pH 7.5. These values are consistent with the published ones, Em = 55 and -100 mV at pH 7.0, that were optically estimated for the same type of preparation (Iba et al. (1985) FEBS Lett. 183, 151-154). The power saturation behavior of the g = 6.0 signal at different redox potentials indicated a direct spin-spin interaction between these two redox centers.  相似文献   

10.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit steady-state proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. In chromatophores of the purple bacterium Rhodobacter sphaeroides, this has been associated with the specific labeling of a surface-exposed aspartate-187 of the cytochrome b subunit of the bc(1) complex [Wang et al. (1998) Arch. Biochem. Biophys. 352, 193-198]. To explore the possible role of this amino acid residue in the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and the electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores from wild type (WT) and mutant cells, in which aspartate-187 of cytochrome b (Asp(B187)) has been changed to asparagine (mutant B187 DN). The kinetics and amplitude of phase III of the electrochromic shift of carotenoids, reflecting electrogenic reactions in the bc(1) complex, and of the redox changes of cytochromes and reaction center, were similar (+/- 15%) in both WT and B187DN chromatophores. DCCD effectively inhibited phase III of the carotenoid bandshift in both B187DN and WT chromatophores. The dependence of the kinetics and amplitude of phase III of the electrochromic shift on DCCD concentration was identical in WT and B187DN chromatophores, indicating that covalent modification of Asp(B187) is not specifically responsible for the effect of DCCD-induced effects of cytochrome bc(1) complex. Furthermore, no evidence for differential inhibition of electrogenesis and electron transport was found in either strain. We conclude that Asp(B187) plays no crucial role in the protonogenic reactions of bc(1) complex, since its replacement by asparagine does not lead to any significant effects on either the electrogenic reactions of bc(1) complex, as revealed by phase III of the electrochromic shift of carotenoids, or sensitivity of turnover to DCCD.  相似文献   

11.
Cytochrome b-561 of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides is reduced after flash illumination in the presence of myxothiazol in an antimycin-sensitive reaction. Flash-induced reduction was observed over the redox range in which cytochrome b-561 and the Q-pool are both oxidized before the flash. The extent of reduction increased with increasing pH, and was maximal at pH greater than 10.0 where the extent approached that observed in the presence of antimycin following a group of flashes. Reduction of cytochrome b-561 in the presence of myxothiazol showed a lag of approximately 1 ms after the flash, followed by reduction with t 1/2 approximately 6 ms; by analogy with the similar kinetics of the quinol oxidase site, we suggest that the rate is determined by collision with the QH2 produced in the pool on flash excitation.  相似文献   

12.
We have examined the thermodynamic properties of the physiological electron donor to ferricytochrome c2 in chromatophores from the photosynthetic bacterium Rhodopseudomonas sphaeroides. This donor (Z), which is capable of reducing the ferricytochrome with a halftime of 1-2 ms under optimal conditions, has an oxidation-reduction midpoint potential of close to 150 mV at pH 7.0, and apparently requires two electrons and two protons for its equilibrium reduction. The state of reduction of Z, which may be a quinone.protein complex near the inner (cytochrome c2) side of the membrane, appears to govern the rate at which the cyclic photosynthetic electron transport system can operate. If Z is oxidized prior to the flash-oxidation of cytochrome c2, the re-reduction of the cytochrome takes hundreds of milliseconds and no third phase of the carotenoid bandshift occurs. In contrast if Z is reduced before flash activation, the cytochrome is rereduced within milliseconds and the third phase of the carotenoid bandshift occurs. The prior reduction of Z also has a dramatic effect on the uncoupler sensitivity of the rate of electron flow; if it is oxidized prior to activation, uncoupler can stimulate the cytochrome rereduction after several turnovers by less than tenfold, but if it is reduced prior to activation, the stimulation after several turnovers can be as dramatic as a thousandfold. The results suggest that Z plays a central role in controlling electron and proton movements in the ubiquinone cytochrome b-c2 oxido-reductase.  相似文献   

13.
14.
The reductant of ferricytochrome c2 in Rhodopseudomonas sphaeroides is a component, Z, which has an equilibrium oxidation-reduction reaction involving two electrons and two protons with a midpoint potential of 155 mV at pH 7. Under energy coupled conditions, the reduction of ferricytochrome c2 by ZH2 is obligatorily coupled to an apparently electrogenic reaction which is monitored by a red shift of the endogeneous carotenoids. Both ferricytochrome c2 reduction and the associated carotenoid bandshift are similarly affected by the concentrations of ZH2 and ferricytochrome c2, pH, temperature the inhibitors diphenylamine and antimycin, and the presence of ubiquinone. The second-order rate constant for ferricytochrome c2 reduction at pH 7.0 and at 24 degrees C was 2 - 10(9) M-1 - s-1, but this varied with pH, being 5.1 - 10(8) M-1 = s-1 at pH 5.2 and 4.3 - 10(9) M-1 - s-1 at pH 9.3. At pH 7 the reaction had an activation energy of 10.3 kcal/mol.  相似文献   

15.
16.
17.
18.
A. Vermeglio  R.K. Clayton 《BBA》1977,461(1):159-165
Photoreduction of the two ubiquinone molecules, UQ1 and UQ2, bound to purified reaction center from Rhodopseudomonas sphaeroides induces different absorption band shifts of bacteriochlorophyll and bacteriopheophytin molecules depending on which ubiquinone is photoreduced. This allows us to study electron transfer between UQ1 and UQ2 directly by absorption spectrometry. The results support a model in which electrons are transferred one by one from UQ1 to UQ2 with a half-time of 200 μs, and two by two from fully reduced UQ2 to the secondary acceptor pool.  相似文献   

19.
Primary electron transfer in hexane-solubilized reaction center proteolipid complexes is similar to that in detergent-solubilized reaction centers or chromatophores when diaminodurene is electron donor. Approximate values for the extinction coefficients of ubisemiquinone and the diaminodurene cation can be calculated. The primary and secondary quinone sites are dissimilar and results in only the transient formation of a semiquinone anion pair after two photochemical turnovers. One of the semiquinone anions decays rapidly, the remaining one and the diaminodurene cation have long lifetimes. Disproportionation between the semiquinone anions does not occur.  相似文献   

20.
Myxothiazol, an inhibitor of the ubiquinol oxidase site of the ubiquinol: cytochrome c2 oxidoreductase complex, has been shown in the present work to inhibit a part of the electrogenic process indicated by phase III of the carotenoid change, in addition to the part of the change inhibited by antimycin. This finding shows that there is an antimycin-insensitive, but myxothiazol-sensitive portion of the slow phase, which indicates the existence of an electrogenic event within the ubiquinol: cytochrome c2 oxidoreductase complex, in addition to that linked to oxidation of cytochrome b-561 which has been previously characterized. Redox titrations show that the appearance of the new electrogenic step is correlated with the amount of cytochrome b-561 available in the oxidized form before the flash. The rate of the antimycin-insensitive and myxothiazol-sensitive portion of the carotenoid change correlates well with the rate of reduction of cytochrome b-561. No carotenoid change associated with reduction of cytochrome b-566 was seen. These findings suggest that the newly identified electrogenic process is linked to electron transfer between cytochrome b-566 and b-561. Calculations of the contribution of this new electrogenic step to the total electrogenic event within the complex show that electrons passing from cytochrome b-566 to cytochrome b-561 pass about 35–50% of the distance across the whole membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号