首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the energy conserving membranes of the photosynthetic bacterium Rhodopseudomonas sphaeroides contain a 25 (+/- 3)-fold molar excess of ubiquinone over the photochemical reaction center, the activity of the ubiquinone-cytochrome b-c2 oxidoreductase is unaffected by quinone extraction until only 3, or at most 4, ubiquinones remain; only then does further extraction prevent the function of the oxidoreductase. Since 2 of these last ubiquinones are integral parts of the photochemical reaction center, we conclude that the ubiquinone-cytochrome b-c2 oxidoreductase requires only 1, or at most 2, molecules of ubiquinone-10 for its function. Earlier kinetic data identified a major electron donor to ferricytochrome c2 as a single molecule (known as Z) which requires 2 electrons and 2 protons for its equilibrium reduction. Hence, we identify a single molecule of quinone, probably ubiquinone-10 in a special environment, as a major electron donor to ferricytochrome c2 in the ubiquinone cytochrome b-c2 oxidoreductase.  相似文献   

2.
Tritium-labeled 3-azidosalicyl-N-(n-octadecyl)amide was synthesized and used as a photoaffinity probe for the antimycin-binding site in both purified ubiquinone-cytochrome b-c1 oxidoreductase and chromatophore vesicles from the photosynthetic bacterium Rhodopseudomonas sphaeroides. In both systems, a prominently labeled protein had a molecular weight of 11,000. Binding to this protein was inhibited by preincubation of the reaction mixture with antimycin prior to addition of the radioactive analog and subsequent irradiation. The antimycin analog, 3-azidosalicyl-N-(n-octadecyl)amide, inhibited succinate-cytochrome c reductase activity in chromatophore vesicles by 50% at a concentration of 150 nmols/mg of protein.  相似文献   

3.
(1) Purified bovine heart mitochondrial cytochrome b-c1 complex (ubiquinone-cytochrome c oxidoreductase) and photosynthetic reaction centres isolated from Rhodopseudomonas sphaeroides strain R-26 have been incorporated into lipid vesicles. In the presence of cytochrome c and ubiquinone-2, light activation caused a cyclic electron transfer involving both components. (2) Since cytochrome c is added outside the vesicles, it is both reduced by the cytochrome b-c1 complex and oxidised by the reaction centre on the outside of the vesicles. Ubiquinone-2, however, is reduced by the reaction centres at a site in contact with the inside of the vesicles, but the reduced form, ubiquinol-2, is oxidised by the cytochrome b-c1 complex at a site in contact with the outer aqueous phase. (3) In the presence of valinomycin plus K+, initiation of cyclic electron flow causes protons to move from inside the vesicles to the outer medium and the H +/2e- ratio was calculated to be close to 4.  相似文献   

4.
The effects of nitric oxide (NO) on electron transfer were studied with a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans. NO inhibited the oxidation of cytochrome c induced by continuous illumination in intact cells. NO inhibited the re-reduction of cytochrome c, the slow phase of the carotenoid bandshift, and the oxidation of cytochrome b after a flash illumination, suggesting that NO inhibited the photosynthetic cyclic electron transfer through the cytochrome b-c 1 region. NO also inhibited the nitrite (NO 2 - ) and NO reductions with succinate as the electron donor in intact cells, but did not inhibit the NO 2 - and NO reductions in chromatophore membranes with ascorbate and phenazine methosulfate as the electron donors. NO reversibly inhibited the ubiquinol: cytochrome c oxidoreductase of the membranes, suggesting that NO inhibited the electron transfer through the cytochrome b-c 1 region and that the cytochrome b-c 1 complex also was involved in the electron transport in both NO 2 - and NO reductions. The catalytic site of NO reduction was distinct from the inhibitory site of NO.Abbreviations UHDBT 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole - UHNQ 3-undecyl-2-hydroxy-1,4-naphthoquinone - MOPS 3-(N-morpholino)propane-sulfonic acid - PMS phenazine methosulfate - DCIP 2,6-dichlorophenol indophenol - DDC diethyl-dithiocarbamate  相似文献   

5.
A purified cytochrome b-c1 complex isolated from yeast mitochondria has been reconstituted into proteoliposomes. The reconstituted comp]lex catalyzed antimycin A-sensitive electron transfer from different analogues of coenzyme Q to cytochrome c. The reconstituted complex was also capable of energy conservation as indicated by uncoupler-stimulated rates of electron transfer, electrogenic proton ejection, and reversed electron flow from cytochrome b to coenzyme Q2 in the presence of antimycin A driven by a valinomycin-induced K+-diffusion potential (negative inside). Close to four protons were ejected per two electrons transported through the reconstituted b-c1 complex with ferricyanide as an artificial and impermeable electron acceptor.l The H+/2e- ratio decreased to two in the presence of the proton-conducting agent, carbonyl cyanide m-chlorophenylhydrazone. The same processes were studied in parallel in energy-conserving site 2 of rat liver mitochondria with similar results. In the reconstituted b-c1 complex, dicyclohexylcarbodiimide (DCCD) blocked the function of the electrogenic proton translocating device in the forward direction of proton ejection as well as in the backwards direction, measured as reversed electron flow from cytochrome b to coenzyme Q2 driven by a K+-diffusion potential. The primary effect of DCCD is localized on the proton ejection process, as the low proton conductance of the proteoliposome membrane was totally preserved after DCCD treatment.  相似文献   

6.
The effect of antimycin on the ubiquinone cytochrome b-c2 (Q b-c2) oxidoreductase of the photosynthetic bacterium Rhodopseudomonas sphaeroides has been studied under controlled oxidation-reduction potential (Eh) conditions by equilibrium measurements and by rapid kinetic analysis of single turnover flash.induced electron and proton translocations. 1. Antimycin shifts the alpha-band of ferro b50 (lambda max 560 nm) by 1 to 2 nm toward the red but has no apparent effect on the equilibrium oxidation-reduction midpoint potential of the cytochrome. 2. This red shift is proportional to the antimycin added until a "titer" of 0.7 +/- 0.1 antimycin per reaction center (RC) is approached. With a similar titer antimycin essentially abolishes the following millisecond reactions activated by saturating single turnover flashes: reduction of ferri c2, oxidation of ferro b, Phase III of the membrane-potential-indicating band shift of endogenous carotenoid pigments, and the uptake of 1 of the 2 protons taken up per electron transferred. Such titrations indicate that the binding (KD approximately 10(-9) m) and mode of inhibition of antimycin are noncooperative and are independent of the membrane's coupling status and of the pH and Eb over the range in which electron transport is operative. 3. In the presence of excess antimycin a partial recovery of ferri c2 reduction is seen when the intensity of the flash is diminished, but only at Eh values such that Z (a special quinone serving as reductant for ferri c2) is reduced but b50 is oxidized before activation. These results are consistent with the following model. Each Q b-c2 oxidoreductase complex includes one antimycin binding site, one b50, and one Z. These complexes and the c2 . RC complexes, present in an 0.7:1 ratio, are to some degree mobile with respect to each other. Ferri b50 can be reduced either via the quinones of the RC or via Z in a reaction also involving c2. The former route is kinetically dominant in the presence of antimycin, but the latter route is the means for "oxidant-induced reduction" and depends on the collisional interaction of the oxidoreductase and c2 . RC complexes. Antimycin interferes with neither of these two routes but does inhibit the oxidation of ferro b50; all the other inhibitory effects are consequent on this.  相似文献   

7.
Tsukatani Y  Miyamoto R  Itoh S  Oh-oka H 《FEBS letters》2006,580(9):2191-2194
We constructed a mutant lacking soluble cytochrome c-554 (CycA) by disruption of the cycA gene in the green sulfur bacterium Chlorobium tepidum. The mutant grew phototrophically with a growth rate slower than that of the wild type, suggesting that CycA is not essential for photosynthetic electron transfer even though CycA is known to work as an electron donor to the reaction center. The re-reduction of photo-oxidized cytochrome c(z) by quinol oxidoreductase was inhibited almost completely by the addition of stigmatellin in the mutant cells. This result indicates that, in the mutant cells, the linear electron transfer can occur from the quinol oxidoreductase to cytochrome c(z), and to reaction center P840 with no participation of CycA.  相似文献   

8.
The primary effect of dicyclohexylcarbodiimide (DCCD) at the cytochrome b-c1 region of the respiratory chain of rat liver mitochondria is an inhibition of proton translocation. No significant decrease was observed in the rate of electron flow from succinate to cytochrome c when measured as cytochrome c reductase, K3Fe(CN)6 reductase, or the rate of H+ release in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone after treatment with sufficient DCCD to abolish completely electrogenic proton ejection. The inhibitory effects of DCCD were time and concentration dependent and affected by the pH of the medium. Lowering the pH from 7.3 to 6.7 resulted in a progressively faster rate and extent of inhibition of proton ejection by DCCD. At pH 6.9, the H+/2e- decreased by 50% within 30 s after DCCD addition; however, at pH 7.3, a 50% decrease was not observed until 2 min after DCCD addition. DCCD did not act as an uncoupler as both the rate of proton ejection and back decay were decreased after incubation with DCCD. Treatment of rat liver mitochondria with DCCD under these same conditions also resulted in a broadening of the sharp spectral shift of cytochrome b observed after antimycin addition to mitochondria previously reduced with succinate suggesting that DCCD may modify cytochrome b in such a way that the binding of antimycin is altered.  相似文献   

9.
Antibodies against cytochromes b and c1 of bovine heart mitochondria and the photosynthetic bacterium, Rhodopseudomonas sphaeroides R-26, were raised in rabbits. The purified antibodies showed high titers against their respective antigens in enzyme-linked immunosorbent assays. Less than 15% cross-reactivity between the mitochondrial and bacterial cytochromes was detected. Although antibodies against mitochondrial cytochrome b did not inhibit the mitochondrial cytochrome b-c1 complex, a 70% inhibition was obtained when these antibodies were incubated with delipidated mitochondrial cytochrome b-c1 complex prior to reconstitution with phospholipids indicating that the catalytic site(s) of mitochondrial cytochrome b are masked by phospholipids. On the other hand, antibodies against bacterial cytochrome b showed significant inhibition of the intact bacterial cytochrome b-c1 complex, indicating that some of the catalytic site epitopes of bacterial cytochrome b are exposed to the hydrophilic environment. Similar to antibodies against mitochondrial cytochrome b, antibodies against bacterial cytochrome b inhibited 50% activity of the mitochondrial cytochrome b-c1 complex only when they were incubated with the delipidated mitochondrial cytochrome b-c1 complex prior to reconstitution with phospholipids, indicating that the common epitopes between the cytochromes b are masked by phospholipids. Antibodies against mitochondrial and bacterial cytochromes c1 completely inhibited their respective cytochrome b-c1 complexes but no cross-immunoinhibition was observed. However, when antibodies against bacterial cytochrome c1 were incubated with the delipidated mitochondrial cytochrome b-c1 complex before reconstitution with phospholipids, a 65% inhibition was observed, indicating that the common epitopes between the cytochromes c1 were also somewhat masked by phospholipids. Antibodies against mitochondrial cytochrome c1 inhibited 70% of the succinate oxidase activity in the intact mitochondria preparation, but no inhibition was observed in submitochondrial particles, indicating that some mitochondrial cytochrome c1 epitopes are exposed to the cytoplasmic side.  相似文献   

10.
We studied the regulation mechanism of electron donations from menaquinol:cytochrome c oxidoreductase and cytochrome c-554 to the type I homodimeric photosynthetic reaction center complex of the green sulfur bacterium Chlorobium tepidum. We measured flash-induced absorption changes of multiple cytochromes in the membranes prepared from a mutant devoid of cytochrome c-554 or in the reconstituted membranes by exogenously adding cytochrome c-555 purified from Chlorobium limicola. The results indicated that the photo-oxidized cytochrome c(z) bound to the reaction center was rereduced rapidly by cytochrome c-555 as well as by the menaquinol:cytochrome c oxidoreductase and that cytochrome c-555 did not function as a shuttle-like electron carrier between the menaquinol:cytochrome c oxidoreductase and cytochrome c(z). It was also shown that the rereduction rate of cytochrome c(z) by cytochrome c-555 was as high as that by the menaquinol:cytochrome c oxidoreductase. The two electron-transfer pathways linked to sulfur metabolisms seem to function independently to donate electrons to the reaction center.  相似文献   

11.
The presence of ubiquinol:cytochrome c2 oxidoreductase was shown in the membranes from a photosynthetic bacterium, Rhodopseudomonas palustris. Some properties of the enzyme in situ were investigated. The optimal pH of this enzyme activity was 7.0 in the intact membranes. The activity was inhibited by both antimycin and myxothiazol. Maximal activity (Vmax) was 3-4 mol cytochrome c (c2) reduced/mol cytochrome c1.s. Apparent activity of the enzyme with horse heart cytochrome c as the electron acceptor decreased as the concentration of salts in the reaction mixture increased, whereas when R. palustris cytochrome c2 was used as the electron acceptor, the activity increased as the concentration of salts increased. Moreover, the activity of the enzyme did not depend on the species or concentration of anions but on both the concentration and valency of the cations of the salts. These salt effects were thought to be due to the change of effective concentration of cytochrome molecules caused by cations near the membrane surface, which was net negatively charged. Apparent Km for ubiquinol-1 was about 80 microM irrespective of the species of cytochrome and the presence of salts.  相似文献   

12.
Treatment of complex III with dicyclohexyldicarbodiimide (DCCD) either before or after incorporation into liposomes resulted in a loss of electrogenic proton movements; however, only minimal decreases in cytochrome c reductase activity were noted in the liposomes containing DCCD-treated complex III. Thus, DCCD appears to act by "uncoupling" proton translocation from electron transport. A decreased sensitivity of the ubiquinol:cytochrome c reductase activity to antimycin was also noted in the DCCD-treated complex III. This loss of sensitivity to antimycin was reflected in a decreased binding of antimycin to the complex after DCCD treatment from 9.5 nmol/mg of protein in the control to 3.8 nmol/mg of protein in the DCCD-treated complex. DCCD also affected the red shift observed after antimycin addition to dithionite-reduced complex III resulting in a broad peak with no sharp maximum. Similarly, DCCD treatment of yeast mitochondria resulted in a complete loss in the red shift after antimycin addition to mitochondria previously reduced with succinate. No loss in enzymatic activity was observed in the DCCD-treated mitochondria. These results suggest that DCCD concomitant with the inhibition of proton ejection in the cytochrome b-c1 region of the respiratory chain causes modifications in the properties of cytochrome b which alter the binding of antimycin without significantly affecting the electron transfer activity of this cytochrome.  相似文献   

13.
M J Nalecz  R P Casey  A Azzi 《Biochimie》1983,65(8-9):513-518
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstituted mitochondrial cytochrome b-c1 complex. In proteoliposomes containing b-c1 complex DCCD inhibits equally electron flow and proton translocation catalyzed by the enzyme. In both isolated and reconstituted systems the inhibitory effect is accompanied by structural alterations in the polypeptide pattern of the enzyme consistent with cross-linking between subunits V and VII. The kinetics of inhibition of enzymic activity correlates with that of the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C] DCCD to both isolated and reconstituted enzyme was also observed, though it was not correlated kinetically with the inhibition.  相似文献   

14.
Possible involvement of polypeptides of b-c1 complex of beef-heart mitochondria in its redox and protonmotive activity has been investigated, by means of chemical modification of amino acid residues in the soluble as well as in the phospholipid-reconstituted b-c1 complex. Treatment of the enzyme with tetranitromethane (C(NO2)4) or with ethoxyformic anhydride (EFA), that modify reversibly tyrosyl and hystidyl residues respectively, resulted in a marked inhibition of electron transport from reduced quinols to cytochrome c. This was accompanied, in b-c1 reconstituted into phospholipid vesicles, by a parallel inhibition of respiratory-linked proton translocation; the H+/e- stoichiometry remained unchanged. Treatment of b-c1 complex with DCCD, that specifically modifies carboxylic groups of glutammic or aspartic residues caused a marked depression of proton translocation in b-c1 vesicles, under conditions where the rate of electron flow in the coupled state, was enhanced. As a consequence the H+/e- stoichiometry was lowered. SDS gel electrophoresis and [14C]DCCD-labelling of the polypeptides of the b-c1 complex showed a major binding of 14C-DCCD to the 8-kDa subunit of the complex and possible cross-linking, induced by DCCD treatment, of polypeptide(s) in the 8-kDa band and the 12-kDa band, with the Fe-s protein of the complex, with the appearance of a new polypeptide band with an apparent molecular mass of about 40 kDa. Involvement of polypeptides of low molecular mass, for which no functional role was so far described, and possibly of the Fe-S protein in the redox-linked proton translocation in b-c1 complex is suggested.  相似文献   

15.
The Langmuir-Blodgett (LB) film technique has been applied to produce oriented and photo-active films of isolated reaction center cytochrome c complexes (RC-cyt c) and chromatophore membranes from the photosynthetic bacterium Rhodopseudomonas viridis. Linear dichroism (LD) and redox potentiometry have been used to identify the four cytochrome c hemes of the RC-cyt c complex. Resolved angular orientations of the four hemes in LB films of both isolated RC-cyt-c complexes and of chromatophore membranes permit the reduction of the 24 possible arrangements to two. Additional structural and functional information from other sources allows us to propose a model which best accounts for all the available experimental data.  相似文献   

16.
B Gasnier  D Scherman  J P Henry 《Biochemistry》1985,24(5):1239-1244
The monoamine carrier of bovine chromaffin granule membrane catalyzes a H+/neutral amine antiport. Dicyclohexylcarbodiimide (DCCD) inhibits this carrier in a time- and concentration -dependent manner as shown by the following evidence: it inhibits the carrier-mediated pH gradient driven monoamine uptake without collapsing the pH gradient; it affects the binding of the specific inhibitors [2-3H]dihydrotetrabenazine and [3H]reserpine. The DCCD inhibition of the carrier occurs in the same concentration range as that of the ATP-dependent H+ translocase. Saturation isotherms of [2-3H]dihydrotetrabenazine binding indicate that DCCD decreases the number of binding sites without any change of the equilibrium dissociation constant. Kinetic studies of DCCD inactivation indicate that the modification of only one amino acid residue is responsible for the inhibition. Preincubation of the membranes with tetrabenazine protects the carrier against inactivation by DCCD: in this case, [2-3H] dihydrotetrabenazine binding and pH gradient driven monoamine uptake are restored after washing out of DCCD and tetrabenazine. We suggest the existence in the monoamine carrier of a carboxylic acid involved in H+ translocation, similar to those demonstrated not only in F0-F1 ATPases but also in cytochrome c oxidase, mitochondrial cytochrome b-c1 complex, and nucleotide transhydrogenase. Protonation-deprotonation of this group would affect the binding of [2-3H]dihydrotetrabenazine by the carrier.  相似文献   

17.
The reduction of duroquinone (DQ), 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), and dichlorophenol indophenol (DCIP) by succinate and NADH was investigated in yeast mitochondria which have no spectrally detectable cytochrome b. Succinate reduces DB in the cytochrome b-deficient mitochondria at rates comparable to that observed in wild-type mitochondria, suggesting that succinate:ubiquinone oxidoreductase is unaffected by the lack of cytochrome b. In the mutant mitochondria, succinate does not reduce DQ or DCIP at significant rates; however, NADH reduces both DQ and DCIP at rates similar to that of the wild-type mitochondria in a myxothiazol, but not antimycin, sensitive reaction. The Ki for myxothiazol in this reaction is close to that for electron transfer through the cytochrome b-c1 complex. In addition, myxothiazol does not inhibit NADH:ubiquinone oxidoreductase. These results confirm our previous suggestion that the cytochrome b-c1 complex is involved in electron transfer from the primary dehydrogenases to DQ and DCIP and suggest that cytochrome b is not the binding site for myxothiazol.  相似文献   

18.
The electron transfer activity of purified cytochrome b6-f complex of spinach chloroplast is inhibited by dicyclohexylcarbodiimide (DCCD) in a concentration and incubation time dependent manner. The maximum inhibition of 75% is observed when 300 mole of DCCD per mole of protein (based on cytochrome f) is incubated with cytochrome b6-f complex at room temperature for 40 min. The inhibition of the complex is not due to the formation of cross links between subunits but due to the modification of carboxyls. The amount of DCCD incorporation is directly proportional to the activity loss, suggesting that some carboxyl groups in the complex are directly or indirectly involved in the catalytic function. The incorporated DCCD is located mainly at cytochrome b6 protein. The partially inhibited complex shows the same H+/e-ratio as that of the intact complex when embedded in phospholipid vesicles.  相似文献   

19.
N,N'-Dicyclohexylcarbodiimide (DCCD) induces a complex set of effects on the succinate-cytochrome c span of the mitochondrial respiratory chain. At concentrations below 1000 mol per mol of cytochrome c1, DCCD is able to block the proton-translocating activity associated to succinate or ubiquinol oxidation without inhibiting the steady-state redox activity of the b-c1 complex either in intact mitochondrial particles or in the isolated ubiquinol-cytochrome c reductase reconstituted in phospholipid vesicles. In parallel to this, DCCD modifies the redox responses of the endogenous cytochrome b, which becomes more rapidly reduced by succinate, and more slowly oxidized when previously reduced by substrates. At similar concentrations the inhibitor apparently stimulates the redox activity of the succinate-ubiquinone reductase. Moreover, DCCD, at concentrations about one order of magnitude higher than those blocking proton translocation, produces inactivation of the redox function of the b-c1 complex. The binding of [14C]DCCD to the isolated b-c1 complex has shown that under conditions leading to the inhibition of the proton-translocating activity of the enzyme, a subunit of about 9500 Da, namely Band VIII, is the most heavily labelled polypeptide of the complex. The possible correlations between the various effects of DCCD and its modification of the b-c1 complex are discussed.  相似文献   

20.
Erythrobacter sp. OCh 114, an aerobic photosynthetic bacterium, had trimethylamine N-oxide (TMAO) reductase activity, which increased when the culture medium contained TMAO. The reductase was located in the periplasm. The bacteria grew anaerobically in the presence of TMAO. These results suggested that Erythrobacter OCh 114 has the ability to reduce TMAO through the respiratory chain. The TMAO respiration system of this organism was different from those of facultative purple photosynthetic bacteria in two respects: (a) TMAO reductase did not have activity to reduce dimethyl sulfoxide and (b) soluble c-type cytochrome, cytochrome c551, and cytochrome b-c1 complex appeared to be involved. The photochemical activity, which is usually inoperative in the anaerobic cell suspension, was restored by TMAO, suggesting that the photosynthesis and the TMAO respiration share a common electron transfer chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号