首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A class of ribonucleases termed S-RNases, which control the pistil expression of self-incompatibility, represents the only known functional products encoded by the S locus in species from the Solanaceae, Scrophulariaceae and Rosaceae. Previously, we identified a pollen-specific F-box gene, AhSLF (S locus F-box)-S2, very similar to S2-RNase in Antirrhinum, a member of the Scrophulariaceae. In addition, AhSLF-S2 also detected the presence of its homologous DNA fragments. To identify these fragments, we constructed two genomic DNA libraries from Antirrhinum self-incompatible lines carrying alleles S1S5 and S2S4, respectively, using a transformation-competent artificial chromosome (TAC) vector. With AhSLF-S2-specific primers, TAC clones containing both AhSLF-S2 and its homologs were subsequently identified (S2TAC, S5TACa, S4TAC, and S1TACa). DNA blot hybridization, sequencing and segregation analyses revealed that they are organized as single allelic copies (AhSLF-S2, -S1, -S4 and -S5) tightly linked to the S-RNases. Furthermore, clusters of F-box genes similar to AhSLF-S2 were identified. In total, three F-box genes (AhSLF-S2, -S2A and -S2C) in S2TAC (51 kb), three (AhSLF-S4, -S4A and -S4D) in S4TAC (75 kb), two (AhSLF-S5 and -S5A) in S5TACa (55 kb), and two (AhSLF-S1 and -S1E) in S1TACa (71 kb), respectively, were identified. Paralogous copies of these genes show 38–54% identity, with allelic copies sharing 90% amino acid identity. Among these genes, three (AhSLF-S2C, -S4D and -S1E) were specifically expressed in pollen, similar to AhSLF-S2, implying that they likely play important roles in pollen, whereas three AhSLF-SA alleles showed no detectable expression. In addition, several types of retroelements and transposons were identified in the sequenced regions, revealing some detailed information on the structural diversity of the S locus region. Taken together, these results indicate that both single allelic and tandemly duplicated genes are associated with the S locus in Antirrhinum. The implications of these findings in evolution and possible roles of allelic AhSLF-S genes in the self-incompatible reaction are discussed in species like Antirrhinum.Sequence data from this article have been deposited with the EMBL/GenBank databases under accession numbers AJ300474, AJ515534, AJ515536 and AJ515535  相似文献   

2.
We previously identified both self-incompatible and self-compatible plants in a natural population of self-incompatible Petunia axillaris subsp. axillaris, and found that all the self-compatible plants studied carried either SC1- or SC2-haplotype. Genetic crosses showed that SC2 was identical to S17 identified from another natural population of P. axillaris, except that its pollen function was defective, and that the pollen-part mutation in SC2 was tightly linked to the S-locus. Recent identification of the S-locus F-box gene (SLF) as the gene that controls pollen specificity in S-RNase-based self-incompatibility has prompted us to examine the molecular basis of this pollen-part mutation. We cloned and sequenced the S17-allele of SLF of P.axillaris, named PaSLF17, and found that SC2 SC2 plants contained extra restriction fragments that hybridized to PaSLF17 in addition to all of those observed in S17 S17 plants. Moreover, these additional fragments co-segregated with SC2. We used the SC2-specific restriction fragments as templates to clone an allele of PaSLF by PCR. To determine the identity of this allele, named PaSLFx, primers based on its sequence were used to amplify PaSLFalleles from genomic DNA of 40 S-homozygotes of P. axillaris, S1 S1 through S40 S40. Sequence comparison revealed that PaSLFx was completely identical with PaSLF19 obtained from S19 S19. We conclude that the S-locus of SC2 contained both S17-allele and the duplicated S19-allele of PaSLF. SC2 is the first naturally occurring pollen-part mutation of a solanaceous species that was shown to be associated with duplication of the pollen S. This finding lends support to the proposal, based on studies of irradiation-generated pollen-part mutants of solanaceous species, that duplication, but not deletion, of the pollen S, causes breakdown of pollen function.  相似文献   

3.
Gametophytic self-incompatibility (GSI) in the grasses is controlled by a distinct two-locus genetic system governed by the multiallelic loci S and Z. We have employed diploid Hordeum bulbosum as a model species for identifying the self-incompatibility (SI) genes and for elucidating the molecular mechanisms of the two-locus SI system in the grasses. In this study, we attempted to identify S haplotype-specific cDNAs expressed in pistils and anthers at the flowering stage in H. bulbosum, using the AFLP-based mRNA fingerprinting (AMF, also called cDNA-AFLP) technique. We used the AMF-derived DNA clones as markers for fine mapping of the S locus, and found that the locus resided in a chromosomal region displaying remarkable suppression of recombination, encompassing a large physical region. Furthermore, we identified three AMF-derived markers displaying complete linkage to the S locus, although they showed no significant homology with genes of known functions. Two of these markers showed expression patterns that were specific to the reproductive organs (pistil or anther), suggesting that they could be potential candidates for the S gene.  相似文献   

4.
Self-incompatibility in the genus Prunus is controlled by two genes at the S-locus, S-RNase and SFB. Both genes exhibit the high polymorphism and high sequence diversity characteristic of plant self-incompatibility systems. Deduced polypeptide sequences of three myrobalan and three domestic plum S-RNases showed over 97% identity with S-RNases from other Prunus species, including almond, sweet cherry, Japanese apricot and Japanese plum. The second intron, which is generally highly polymorphic between alleles was also remarkably well conserved within these S-allele pairs. Degenerate consensus primers were developed and used to amplify and sequence the co-adapted polymorphic SFB alleles. Sequence comparisons also indicated high degrees of polypeptide sequence identity between three myrobalan and the three domestic plum SFB alleles and the corresponding Prunus SFB alleles. We discuss these trans-specific allele identities in terms of S-allele function, evolution of new allele specificities and Prunus taxonomy and speciation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
The gene SFB encodes an F-box protein that has appropriate S-haplotype-specific variation to be the pollen determinant in the S-RNase-based gametophytic self-incompatibility (GSI) reaction in Prunus (Rosaceae). To further characterize Prunus SFB, we cloned and sequenced four additional alleles from sweet cherry (P. avium), SFB 1 , SFB 2 , SFB 4 , and SFB 5 . These four alleles showed haplotype-specific sequence diversity similar to the other nine SFB alleles that have been cloned. In an amino acid alignment of Prunus SFBs, including the four newly cloned alleles, 121 out of the 384 sites were conserved and an additional 65 sites had only conservative replacements. Amino acid identity among the SFBs ranged from 66.0% to 82.5%. Based on normed variability indices (NVI), 34 of the non-conserved sites were considered to be highly variable. Most of the variable sites were located at the C-terminal region. A window-averaged plot of NVI indicated that there were two variable and two hypervariable regions. These variable and hypervariable regions appeared to be hydrophilic or at least not strongly hydrophobic, which suggests that these regions may be exposed on the surface and function in the allele specificity of the GSI reaction. Evidence of positive selection was detected using maximum likelihood methods with sites under positive selection concentrated in the variable and hypervariable regions.K. Ikeda and B. Igic contributed equally to this paperNucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ nucleotide sequence databases under the accession numbers AB111518, AB111519, AB111520, and AB111521, for SFB 1, SFB 2, SFB 5, and SFB 4, respectively  相似文献   

7.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

8.
Self-incompatibility has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, i.e., the S-RNase gene and the pollen-expressed SFB/SLF (S-haplotype-specific F-box/S-locus F-box) gene. However, the SFB gene in Japanese plum (Prunus salicina Lindl.) has not yet been identified. We determined eight novel sequences homologous to the SFB genes of other Prunus species and named these sequences PsSFB. The gene structure of the SFB genes and the characteristic domains in deduced amino acid sequences were conserved. Three sequences from 410 to 2,800 bp of the intergenic region between the PsSFB sequences and the S-RNase alleles were obtained. The eight identified PsSFB sequences showed S-haplotype-specific polymorphism, with 74–83% amino acid identity. These alleles were exclusively expressed in the pollen. These results suggest that the PsSFB alleles are the pollen S-determinants of GSI in Japanese plum. Nucleotide sequence data reported are available in the NCBI database under the accession numbers DQ849084–DQ849090 and DQ849118.  相似文献   

9.
While the breeding system known as distyly has been used as a model system in genetics, and evolutionary biology for over a century, the genes determining this system remain unknown. To positionally clone genes determining distyly, a high-resolution map of the S-locus region of Turnera has been constructed using segregation data from 2,013 backcross progeny. We discovered three putative genes tightly linked with the S-locus. An N-acetyltransferase (TkNACE) flanks the S-locus at 0.35 cM while a sulfotransferase (TkST1) and a non-LTR retroelement (TsRETRO) show complete linkage to the S-locus. An assay of population samples of six species revealed that TsRETRO, initially discovered in diploid Turnera subulata, is also associated with the S-allele in tetraploid T. subulata and diploid Turnera scabra. The sulfotransferase gene shows some level of differential expression in long versus short styles, indicating it might be involved in some aspect of distyly. The complete linkage of TkST1 and TsRETRO to the S-locus suggests that both genes may reside within, or in the immediate vicinity of the S-locus. Chromosome walking has been initiated using one of the genes discovered in the present study to identify the genes determining distyly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
S-Adenosylmethionine (SAM) is synthesized via the metabolic reaction involving adenosine triphosphate and l-methionine that is catalyzed by the enzyme S-adenosyl-l-methionine synthetase (SAM-s) and encoded by the gene metK. In the present study, metK with the absence of introns from Saccharomyces cerevisiae was introduced into Streptomyces actuosus, a nosiheptide (Nsh) producer. Intracellular SAM levels were determined by high-pressure liquid chromatography. Through optimizing the nutrient content of the medium, it was shown that increased SAM production induced by the overexpression of SAM-s leads to an increase in the intracellular cysteine pool and overproduction of Nsh in S. actuosus. This investigation shows that increased SAM promotes the elevated production of the non-ribosomal thiopeptide Nsh in Streptomyces sp.  相似文献   

11.
Marine Glutathione <Emphasis Type="Italic">S</Emphasis>-Transferases   总被引:2,自引:0,他引:2  
The aquatic environment is generally affected by the presence of environmental xenobiotic compounds. One of the major xenobiotic detoxifying enzymes is glutathione S-transferase (GST), which belongs to a family of multifunctional enzymes involved in catalyzing nucleophilic attack of the sulfur atom of glutathione (γ-glutamyl-cysteinylglycine) to an electrophilic group on metabolic products or xenobiotic compounds. Because of the unique nature of the aquatic environment and the possible pollution therein, the biochemical evolution in terms of the nature of GSTs could by uniquely expressed. The full complement of GSTs has not been studied in marine organisms, as very few aquatic GSTs have been fully characterized. The focus of this article is to present an overview of the GST superfamily and their critical role in the survival of organisms in the marine environment, emphasizing the critical roles of GSTs in the detoxification of marine organisms and the unique characteristics of their GSTs compared to those from non-marine organisms.  相似文献   

12.
13.
14.
This study demonstrates that self-compatible (SC) peach has mutant versions of S haplotypes that are present in self-incompatible (SI) Prunus species. All three peach S haplotypes, S 1 , S 2 , and S 2m , found in this study encode mutated pollen determinants, SFB, while only S 2m has a mutation that affects the function of the pistil determinant S-RNase. A cysteine residue in the C5 domain of the S 2m -RNase is substituted by a tyrosine residue, thereby reducing RNase stability. The peach SFB mutations are similar to the SFB mutations found in SC haplotypes of sweet cherry (P. avium) and Japanese apricot (P. mume). SFB 1 of the S 1 haplotype, a mutant version of almond (P. dulcis) S k haplotype, encodes truncated SFB due to a 155 bp insertion. SFB 2 of the S 2 and S 2m haplotypes, both of which are mutant versions of the S a haplotype in Japanese plum (P. salicina), encodes a truncated SFB due to a 5 bp insertion. Thus, regardless of the functionality of the pistil determinant, all three peach S haplotypes are SC haplotypes. Our finding that peach has mutant versions of S haplotypes that function in almond and Japanese plum, which are phylogenetically close and remote species, respectively, to peach in the subfamily Prunoideae of the Roasaceae, provides insight into the SC/SI evolution in Prunus. We discuss the significance of SC pollen part mutation in peach with special reference to possible differences in the SI mechanisms between Prunus and Solanaceae.  相似文献   

15.
Members of the YABBY gene family have a general role that promotes abaxial cell fate in a model eudicot, Arabidopsis thaliana. To understand the function of YABBY genes in monocots, we have isolated all YABBY genes in Oryza sativa (rice), and revealed the spatial and temporal expression pattern of one of these genes, OsYABBY1. In rice, eight YABBY genes constitute a small gene family and are classified into four groups according to sequence similarity, exon-intron structure, and organ-specific expression patterns. OsYABBY1 shows unique spatial expression patterns that have not previously been reported for other YABBY genes, so far. OsYABBY1 is expressed in putative precursor cells of both the mestome sheath in the large vascular bundle and the abaxial sclerenchyma in the leaves. In the flower, OsYABBY1 is specifically expressed in the palea and lemma from their inception, and is confined to several cell layers of these organs in the later developmental stages. The OsYABBY1-expressing domains are closely associated with cells that subsequently differentiate into sclerenchymatous cells. These findings suggest that the function of OsYABBY1 is involved in regulating the differentiation of a few specific cell types and is unrelated to polar regulation of lateral organ development.  相似文献   

16.
The S gene region of the hepatitis B virus (HBV) is responsible for the expression of surface antigens and includes the ‘a’-determinant region. Thus, mutation(s) in this region would afford HBV variants a distinct survival advantage, permitting the mutant virus to escape from the immune system. The aim of this study was to search for mutations of the S gene region in different patient groups infected with genotype D variants of HBV, and to analyse the biological significance of these mutations. Moreover, we investigated S gene mutation inductance among family members. Forty HBV-DNA-positive patients were determined among 132 hepatitis B surface antigen (HbsAg) carriers by the first stage of seminested PCR. Genotypes and subtypes were established by sequencing of the amplified S gene regions. Variants were compared with original sequences of these serotypes, and mutations were identified. All variants were designated as genotype D and subtype ayw3. Ten kinds of point mutations were identified within the S region. The highest rates of mutation were found in chronic hepatitis patients and their family members. The amino acid mutations 125 (M → T) and 127 (T → P) were found on the first loop of ‘a’-determinant. The other consequence was mutation inductance in a family member. We found some mutations in the S gene region known to be stable and observed that some of these mutations affected S gene expression.  相似文献   

17.
18.
The oxidative deamination of methylated putrescine by a diamine oxidase activity (DAO) is an important step in the biosynthesis of nicotine in tobacco and tropane alkaloids in several Solanaceous plants. A polyclonal rabbit antiserum was previously developed to a purported purified DAO enzyme from Nicotiana tabacum. The antiserum bound to a single 53 kDa protein and immunoprecipitated 80 of DAO activity from tobacco root extracts. In an effort to obtain DAO cDNAs, this antiserum was used to screen a tobacco cDNA expression library and three distinct immunoreactive cDNA clones were isolated. These cDNAs encoded predicted proteins that were either identical or nearly identical to predicted S-adenosylhomocysteine hydrolase (SAHH) from two Nicotiana species. Thus, the rabbit antiserum was not specific to DAO, even though it immunodepleted the majority of DAO activity from root extracts. Alternative hypotheses to explain the DAO immunodepletion results (such as poisoning of DAO activity or that SAHH is a bifunctional enzyme) were tested and ruled out. Therefore, we hypothesize that SAHH associates with DAO as part of a larger multienzyme complex that may function in planta as a nicotine metabolic channel.  相似文献   

19.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.  相似文献   

20.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号