首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.  相似文献   

2.
From phosphomannose isomerase-less mutants of E. coli strains 08 and 09, rfe? derivatives were constructed by recombination with a Salmonella rfe? donor. In contrast to membranes from the parent E. coli strains, those from the rfe? recombinants did not synthesize the 08 or 09 mannan from GDP mannose in vitro. They could, however, be restored to biosynthetic activity with butanol extracts from the E. coli rfe+ bacteria. This indicated that the rfe mutation affects the synthesis of a hydrophobic acceptor.  相似文献   

3.
For the quantitative determination of nonradioactive DNA fragments by gel electrophoresis, it is usually necessary to photograph the gel after staining with ethidium bromide and evaluate the negative by densitometry. It has previously been shown that, because of the logarithmic nature of the photographic process, it is not the optical density (E) of the film which is proportional to the amount of DNA in the gel but instead the value 10Eγ, γ being a film constant. We describe the design of a simple instrument that converts E into 10Eγ. The instrument can be built in any electronic workshop at low cost. When it is used together with a standard recording densitometer, densitometric tracings of 10Eγ are obtained directly. These tracings can be quantitated by simple peak area measurements, thereby circumventing complicated mathematical transformations. Quantitative analyses of a linear and an exponential densitogram of restriction nuclease digested plasmid DNA are presented to demonstrate the usefulness of the instrument.  相似文献   

4.
Genetic transformation of E.coli for various chromosomal markers was accomplished by (i) using recipient cells that lack the recBC DNase but were recombination proficient due to sbcA or sbcB mutations and (ii) treating the recipient cells with CaCl2 at a concentration that facilitates transfection by λ DNA. Cotransformation of three markers (thr+ara+.leu+) was found to depend on the molecular weight of the transforming DNA.  相似文献   

5.
Soluble (Na++K+)-ATPase consisting predominantly of αβ-units with Mr below 170 000 was prepared by incubating pure membrane-bound (Na++K+)-ATPase (35–48 μmol Pi/min per mg protein) from the outer renal medulla with the non-ionic detergent dodecyloctaethyleneglycol monoether (C12E8). (Na++K+)-ATPase and potassium phosphatase remained fully active in the detergent solution at C12E8/protein ratios of 2.5–3, at which 50–70% of the membrane protein was solubilized. The soluble protomeric (Na++K+)-ATPase was reconstituted to Na+, K+ pumps in phospholipid vesicles by the freeze-thaw sonication procedure. Protein solubilization was complete at C12E8/protein ratios of 5–6, at the expense of partial inactivation, but (Na++K+)-ATPase and potassium phosphatase could be reactivated after binding of C12E8 to Bio-Beads SM2. At C12E8/protein ratios higher than 6 the activities were irreversibly lost. Inactivation could be explained by delipidation. It was not due to subunit dissociation since only small changes in sedimentation velocities were seen when the C12E8/protein ratio was increased from 2.9 to 46. As determined immediately after solubilization, S20,w was 7.4 S for the fully active (Na++K+)-ATPase, 7.3 S for the partially active particle, and 6.5 S for the inactive particle at high C12E8/protein ratios. The maximum molecular masses determined by analytical ultracentrifugation were 141 000–170 000 dalton for these protein particles. Secondary aggregation occurred during column chromatography, with formation of enzymatically active (αβ)2-dimers or (αβ)3-trimers with S20,w=10–12 S and apparent molecular masses in the range 273 000–386 000 daltons. This may reflect non-specific time-dependent aggregation of the detergent micelles.  相似文献   

6.
A non-alkalophilic mutant strain of Bacillusalcalophilus grows on L-malate over a pH range from 5.0 to 9.0. The mutant does not exhibit the energy-dependent efflux of Na+ that has been used to assay a Na+H+ antiporter in the wild type organism. The mutant also fails to transport α-aminoisobutyric acid, at pH 9.0, either in the presence or absence of Na+; at pH 5.5, the amino acid analogue is taken up by a Na+-independent mechanism. The properties of the mutant constitute strong evidence that the Na+H+ antiporter is involved in maintaining an acidified cytoplasm in B. alcalophilus.  相似文献   

7.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1)Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5)K+ + Na+ + ATP, Na+ + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (K0.5s) were 3 mM, 0.13 mM and 4μM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i.e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)-ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 · nucleotide and EP), which all have different conformations.  相似文献   

8.
DNA-dependent RNA polymerase has been studied in adult mouse liver and mouse blastocysts. The enzyme from mouse liver was resolved into three enzyme forms by DEAE-Sephadex chromatography. Two of the forms, IA and IB, are insensitive to α-amanitin, have low Mn2+Mg2+ activity ratios, and are optimally active at low ionic strength. Form II is inhibited by α-amanitin, has a higher Mn2+Mg2+ activity ratio, and is most active at high ionic strength. An optimal reaction temperature of 37 ° C was found for all enzyme forms. All of the isolated enzyme forms are inhibited by the exotoxin from Bacillus thuringiensis and the inhibition can be partially reversed by increased ATP levels. Forms IA and IB are most active with native template while form II prefers denatured DNA.The blastocyst RNA polymerase activity exhibits similar requirements for divalent metal ions and ionic strength to the purified liver enzymes. The maximum inhibition of blastocyst RNA polymerase obtained with α-amanitin and exotoxin differs from that observed for purified liver enzymes but is similar to the inhibition of liver homogenate. However, the concentrations of inhibitor required for maximum inhibition by α-amanitin and exotoxin is different for the blastocyst and liver homogenate enzymes.  相似文献   

9.
In an accompanying publication by Duckwitz-Peterlein, Eilenberger and Overath ((1977) Biochim. Biophys. Acta 469, 311–325) it is shown that the exchange of lipid molecules between negatively charged vesicles consisting of total phospholipid extracts from Escherichia coli occurs by the transfer of single lipid monomers or small micelles through the water. Here a kinetic interpretation is presented in terms of a rate constant, k?, for the escape of lipid molecules from the vesicle bilayer into the water. The evaluated rate constants are k?P = (0.86 ± 0.05) · 10?5s?1 and k?E = (1.09 ± 0.13) · 10?6s?1 for phospholipid molecules with trans-Δ9-hexadecenoate and trans-Δ9-octadecenoate, respectively, as the predominant acyl chain component. The rate constants are discussed in terms of the acyl chain and polar head group composition of the lipids.  相似文献   

10.
The activity of calcium-stimulated and magnesium-dependent adenosinetriphosphatase which possesses a high affinity for free calcium (high-affinity (Ca2+ + Mg2+)-ATPase, EC 3.6.1.3) has been detected in rat ascites hepatoma AH109A cell plasma membranes. The high-affinity (Ca2+ + Mg2+)-ATPase had an apparent half saturation constant of 77 ± 31 nM for free calcium, a maximum reaction velocity of 9.9 ± 3.5 nmol ATP hydrolyzed/mg protein per min, and a Hill number of 0.8. Maximum activity was obtained at 0.2 μM free calcium. The high-affinity (Ca2+ + Mg2+)-ATPase was absolutely dependent on 3–10 mM magnesium and the pH optimum was within physiological range (pH 7.2–7.5). Among the nucleoside trisphosphates tested, ATP was the best substrate, with an apparent Km of 30 μM. The distribution pattern of this enzyme in the subcellular fractions of the ascites hepatoma cell homogenate (as shown by the linear sucrose density gradient ultracentrifugation method) was similar to that of the known plasma membrane marker enzyme alkaline phosphatase (EC 3.1.3.1), indicating that the ATPase was located in the plasma membrane. Various agents, such as K+, Na+, ouabain, KCN, dicyclohexylcarbodiimide and NaN3, had no significant effect on the activity of high-affinity (Ca2+ + Mg2+)-ATPase. Orthovanadate inhibited this enzyme activity with an apparent half-maximal inhibition constant of 40 μM. The high-affinity (Ca2+ + Mg2+)-ATPase was neither inhibited by trifluoperazine, a calmodulin-antagonist, nor stimulated by bovine brain calmodulin, whether the plasma membranes were prepared with or without ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid. Since the kinetic properties of the high-affinity (Ca2+ + Mg2+)-ATPase showed a close resemblance to those of erythrocyte plasma membrane (Ca2+ + Mg2+)-ATPase, the high-affinity (Ca2+ + Mg2+)-ATPase of rat ascites hepatoma cell plasma membrane is proposed to be a calcium-pumping ATPase of these cells.  相似文献   

11.
The phoS periplasmic protein, implicated in alkaline phosphatase regulation, is shown to be involved in inorganic phosphate (Pi) transport in E. coli. Although phoS? cells dependent upon the PST system for Pi transport can grow in minimal medium with 1 mM Pi as source of phosphorus, the affinity of these cells for Pi is greatly reduced; Km = 18 μM compared with Km = 0.4 μM for phoS+ cells. phoS? cells dependent upon the PST Pi transport system acquire the ability to accumulate Asi from the medium in contrast to phoS+ cells which exclude this toxic anion. It would appear that the periplasmic phoS protein is not essential for Pi accumulation but is involved in maintaining the specificity of the PST Pi transport system.  相似文献   

12.
In a dnaCts mutant of E. coli, the reinitiation of DNA synthesis, which occurred by the shift of the culture from a restrictive temperature to a permissive temperature, was markedly prevented by habakacin, dibekacin, kanamycin, and gentamicin. On the contrary, chloramphenicol did not inhibit the reinitiation synthesis for 30 min. In a parallel experiment, leucine uptake into protein was profoundly blocked by chloramphenicol, but only slightly by habekacin. Habekacin did not significantly affect DNA elongation of the cells at a restrictive temperature. We propose that inhibition of initiation of replication by aminoglycoside antibiotics is related to their lethality.  相似文献   

13.
The kinetics of isotopic Na+ flows was studied in urinary bladders of toads from the Dominican Republic. Initial studies of the potential dependence of passive serosal to mucosal 22Na+ efflux demonstrated the absence of isotope interaction and/or other coupling with passive Na+ flow. The electrical current I and mucosal to serosal 22Na+ influx were then measured with transmembrane potential clamped at Δψ = 0, 25, 50, 75 or 100 mV. Subsequent elimination of active Na+ transport mucosal amiloride permitted calculation of the rates of active Na+ transport JNaa and active and passive influx JNaNa and JNaa and JNap. The results indicate that for Dominican toad bladders mounted in chambers only Na+ contributes significantly to transepithelial active ion transport; hence JNaa = Ja. Ja was abolished at Δψ = E = 96.3 ± 1.9 (S.E.) mV. As Δψ approached E, active efflux Ja became demonstrable. At Δ = 100 mV, Ja exceeded Ja, so that Ja was negative. Experimental values of Ja agreed well with theoretical values predicted by a thermodynamic formulation: Jexpa = 0.985 Jtheora (r = 0.993). The dependence of Ja on Δψ is curvilinear.  相似文献   

14.
The structural changes in the cell membrane of λ-lysogenic Escherichia coli induced by colicin E2 were examined. The addition of colicin E2 made the cells susceptible to various detergents and the transport rate of o-nitrophenyl-β-D-galactoside into the colicin-treated cells was stimulated markedly by adding a low concentration of sodium dodecyl sulfate. The fluorescence intensity of 8-anilino-1-naphthalenesulfonate bound to the cells was markedly increased by adding colicin E2. Colicin E2 stimulated the incorporation of 32P from prelabeled phosphatidylglycerol to cardiolipin. All these changes probably suggesting the structural alteration of the cell membrane were dependent on the presence of the rex gene of λ prophage in the cells.  相似文献   

15.
The redox potentials for cytochrome c-552 at different ionic strengths, pH 7, have been determined, together with the thermodynamic parameters of the redox reaction. The effects of the electrostatic media on the redox potential of cytochrome c-552 do not depend on the nature of the ions employed. At 25 °C and pH 7 the observed potentials depend on the ionic strength, I, according to the equation: Eobso = 0.280 + .525 (I12(I + I12)). The significance of the ionic strength dependence of the redox potentials and their derived thermodynamic parameters are discussed and compared to those of mammalian cytochrome c. It is concluded that the redox potentials for ionic strength approaching zero are not affected by the overall net charge of the proteins; at finite ionic strengths, the protein charges play a very important role in determining the observed redox potentials.  相似文献   

16.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

17.
Na+, K+ and Cl? concentrations (cji) and activities (aji), and mucosal membrane potentials (Em) were measured in epithelial cells of isolated bullfrog (Rana catesbeiana) small intestine. Segments of intestine were stripped of their external muscle layers, and bathed (at 25°C and pH 7.2) in oxygenated Ringer solutions containing 105 mM Na+ and Cl? and 5.4 mM K+. Na+ and K+ concentrations were determined by atomic absorption spectrometry and Cl? concentrations by conductometric titration following extraction of the dried tissue with 0.1 M HNO3. 14C-labelled inulin was used to determine extracellular volume. Em was measured with conventional open tip microelectrodes, aCli with solid-state Cl?-selective silver microelectrodes and aNai and aKi with Na+- and K+-selective liquid ion-exchanger microelectrodes. The average Em recorded was ?34 mV. cNai, cKi and cCli were 51, 105 and 52 mM. The corresponding values for aNai, aKi and aCli were 18, 80 and 33 mM. These results suggest that a large fraction of the cytoplasmic Na+ is ‘bound’ or sequestered in an osmotically inactive form, that all, or virtually all the cytoplasmic K+ behaves as if in free solution, and that there is probably some binding of cytoplasmic Cl?. aCli significantly exceeds the level corresponding to electrochemical equilibrium across the mucosal and baso-lateral cell membranes. Earlier studies showed that coupled mucosal entry of Na+ and Cl? is implicated in intracellular Cl? accumulation in this tissue. This study permitted estimation of the steady-state transapical Na+ and Cl? electrochemical potential differences (Δμ̄Na and Δμ̄Cl). Δμ̄Na (?7000 J · mol?1; cell minus mucosal medium) was energetically more than sufficient to account for Δμ̄Cl (1000–2000 J · mol?1).  相似文献   

18.
The interactions between calmodulin, ATP and Ca2+ on the red cell Ca2+ pump have been studied in membranes stripped of native calmodulin or rebound with purified red cell calmodulin. Calmodulin stimulates the maximal rate of (Ca2+ + Mg2+)-ATPase by 5–10-fold and the rate of Ca2+-dependent phosphorylation by at least 10-fold. In calmodulin-bound membranes ATP activates (Ca2+ + Mg2+)-ATPase along a biphasic concentration curve (Km1 ≈ 1.4 μM, Km2 ≈ 330 μM), but in stripped membranes the curve is essentially hyperbolic (Km ≈ 7 μM). In calmodulin-bound membranes Ca2+ activates (Ca2+ + Mg2+)-ATPase at low concentrations (Km < 0.28 μM) in stripped membranes the apparent Ca2+ affinities are at least 10-fold lower.The results suggest that calmodulin (and perhaps ATP) affect a conformational equilibrium between E2 and E1 forms of the Ca2+ pump protein.  相似文献   

19.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

20.
Superoxide anion can serve a reducing agent for tyramine hydroxylation by dopamine-β-hydroxylase. Stable O2? solutions were obtained by dissolving KO2 in dry dimethylsulfoxide and infused into buffered solutions of tyramine and dopamine-β-hydroxylase at constant rate. The reaction requires molecular oxygen, but differs from the ascorbate dependent hydroxylation in its alkaline pH optimum value (pH 7.5) and its low rate (9 nmol octopamine formed/min/mg of protein). In absence of tyramine O2? does not produce a stable reduced form of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号