首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human liver extracts contain an activating protein which is required for hexosaminidase A-catalysed hydrolysis of the N-acetylgalactosaminyl linkage of GM2 ganglioside [N-acetylgalactosaminyl-(N-acetylneuraminyl) galactosylglucosylceramide]. A partially purified preparation of human liver hexosaminidase A that is substantially free of GM2 ganglioside hydrolase activity is used to assay the activating protein. The proceudres of heat and alcohol denaturation, ion-exchange chromatography and gel filtration were used to purify the activating protein over 100-fold from crude human liver extracts. When the purified activating protein is analysed by polyacrylamide-gel disc electrophoresis, two closely migrating protein bands are seen. When purified activating protein is used to reconstitute the GM2 ganglioside hydrolase activity, the rate of reaction is proportional to the amount of hexosaminidase A used. The activation is specific for GM2 ganglioside and and hexosaminidase A. The activating protein did not stimulate hydrolysis of asialo-GM2 ganglioside by either hexosaminidase A or B. Hexosaminidase B did not catalyse hydrolysis of GM2 ganglioside with or without the activator. Kinetic experiments suggest the presence of an enzyme–activator complex. The dissociation constant of this complex is decreased when higher concentrations of substrate are used, suggesting the formation of a ternary complex between enzyme, activator and substrate. Determination of the molecular weight of the activating protein by gel-filtration and sedimentation-velocity methods gave values of 36000 and 39000 respectively.  相似文献   

2.
Hexosaminidases (EC 3.2.1.30) A and B from human kidney cortex were purified to homogeneity by using concanavalin A affinity chromatography, ion-exchange chromatography and gel filtration. The yield of homogeneous isoenzymes improved approx. 20-fold, giving preparations of hexosaminidases A and B with specific activities of about 200 and 325 units/mg of protein respectively. The kinetic and structural properties of kidney hexosaminidase isoenzymes were studied and compared with the hexosaminidase isoenzymes from human placenta. The amino acid composition of hexosaminidase A was significantly different from that of hexosaminidase B. In the event of success in developing enzyme-replacement therapy for Tay-Sachs and Sandhoff's diseases, this modified procedure can furnish larger amounts of homogeneous isoenzymes.  相似文献   

3.
Suckling rat liver N-acetyl-β-glucosaminidase (hexosaminidase) activity undergoes considerable fluctuation during the first two weeks of life. As two major forms of hexosaminidase (A, heat-labile, and B, heat-stable) are known to exist in both human and adult rat liver, we choose to examine the effect of the maturative hormones, thyroxine and cortisone, upon these isozymes during the suckling period. Between days 7 and 15, the observed developmental change is attributable solely to an increase in the ‘A-like’ (heat-labile) form of the enzyme; an enhanced response is seen in thyroxine-injected 11–15-day old animals. The response may be considered ‘age-independent’, as adult animals react in the same manner. In contrast, cortisone-injected sucklings show a decrease in both A and B isozymes, while in adults no changes in total activity or isozyme distribution are evoked. The ratio of hexosaminidase A to hexosaminidase B in suckling rat liver appears to shift in favor of the labile (A) isozyme early in development.  相似文献   

4.
B Geiger  E Calef  R Arnon 《Biochemistry》1978,17(9):1713-1717
Hexasaminidase P, the main isozyme of hexosaminidase in pregnancy serum, was isolated and purified 600--700-fold by a two-step purification procedure--affinity chromatography on Sepharose-bound epsilon-aminocaproyl-N-acetylglucosylamine, followed by ion-exchange chromatography on DEAE-cellulose. The purified enzyme was subjected to biochemical and immunochemical analysis. Its catalytic property, namely, kinetic behavior, is similar to that of the major isozymes of hexosaminidase, A and B. However, it differs from these isozymes in its electrophoretic mobility and in its apparent molecular weight which is around 150 000 compared with 100 000 of the A and B isozymes. Immunochemical analysis indicates that the P isozymes is antigenically cross-reactive with both A and B isozymes, but it does not contain the A-specific antigenic determinants, and exhibits identical antigenic specificity to hexasaminidase B. Two possible structures are suggested that are compatible with the experimental data: (a) a hexosaminidase B like structure with higher extent of glycosylation; (b) a hexameter of beta chain, possibly arranged as three beta2 subunits.  相似文献   

5.
Two neutral β-galactosidase isozymes were purified from human liver. The initial step of purification was removal of the acidic β-galactosidases by adsorption on concanavalin A-Sepharose 4B conjugate. Subsequent purification steps included ammonium sulfate precipitation, diethylaminoethyl cellulose column chromatography, Sephadex G-100 gel filtration, and preparative polyacrylamide-gel isoelectric focusing. The final step of purification was affinity chromatography of the separated isoelectric forms on ?-aminocaproyl-β-d-galactosylamine-Sepharose 4B conjugate. The purified β-galactosidase isozymes had activity toward both β-d-galactoside and β-d-glucoside derivatives of 4-methylumbelliferone and p-nitrophenol with a pH optimum around 6.2. These enzyme forms were also found to possess lactosylceramidase II activity with a pH optimum in the range of 5.4 to 5.6, but not lactosylceramidase I activity and no activity toward galactosylceramide or GM1-ganglioside. The molecular weight was found to be in the range of 37,500–39,500 for the two neutral isozymes and they had similar Km and V values; the more acidic form (designated β-galactosidase N1) was more heat stable than the other form (designated β-galactosidase N2). Antibodies evoked against the N1 and N2 β-galactosidases gave identical precipitin lines retaining enzymatic activity. No cross-reactivity was observed between the neutral and the acidic isozymes when examined with the respective antisera.  相似文献   

6.
Clearance experiments with highly purified lysosomal glycosidases, β-glucuronidase and N-acetyl-β-d-glucosaminidase, following intravenous infusion revealed widely varying clearance profiles which depended on the tissue source of the enzyme. Normal rat serum β-glucuronidase and epididymal N-acetyl-β-d-glucosaminidase were cleared slowly from the circulation when compared with rat preputial gland β-glucuronidase, liver lysosomal β-glucuronidase, and liver lysosomal N-acetyl-β-d-glucosaminidase, respectively, which were cleared rapidly. Experiments comparing the catalytic properties and molecular dimensions of the enzymes revealed no differences between rapid and slow clearance forms. Kinetic analysis using the rapid clearance forms of β-glucuronidase has allowed the resolution of at least two components, rapid and slow. Clearance of the rapid component is saturable and appears to reflect binding or uptake by a limited number of sites. By contrast, the clearance rate of the slow component increased linearly with respect to dose and may be due to nonspecific or low-affinity binding. Competition experiments with β-glucuronidase-free lysosomal extract and highly purified lysosomal enzymes, but not serum glycoproteins or colloidal silver, suggest that one lysosomal enzyme inhibits clearance of others and that a common mechanism may be involved in their binding.  相似文献   

7.
Certain highly purified forms of rat lysosomal glycosidases, β-glucuronidase and N-acetyl-β-d-glucosaminidase, are rapidly cleared from the circulation following intravenous infusion. Several lines of evidence are presented which indicate that the primary site of enzyme uptake is the liver. Clearance of the two enzymes was unaffected by nephrectomy, whereas it was abolished by evisceration. Tissue distribution experiments with native and [125I]β-glucuronidase indicate the liver as the major, if not exclusive, site of enzyme uptake. Experiments with the isolated perfused liver showed clearance of certain enzyme preparations but not others. Those enzymes cleared by the isolated perfused liver were likewise cleared in vivo. Liver fractionation studies following infusion of large doses of β-glucuronidase revealed a rapid, short-lived increase in microsomal β-glucuronidase and a slower but larger increase in lysosomal β-glucuronidase. The results indicate that β-glucuronidase, N-acetyl-β-d-glucosaminidase, and probably other glycosidases are rapidly incorporated into the lysosomal compartment of liver.  相似文献   

8.
1. Hexosaminidase C has been purified from human placenta. Complete separation from hexosaminidases A and B was achieved. 2. The following properties of hexosaminidase C differ from those of the A and B isozymes. Presence in the supernatant rather than the lysosomes, neutral pH optimum, higher molecular weight, lack of activity on beta-N-acetylgalactosamine derivatives, and lack of immunological relationship. 3. Hexosaminidase C is active in patients deficient in hexosaminidases A and B and can be recognized by its characteristic electrophoretic mobility. It is concluded that the genetic origin of hexosaminidase C is probably different from that of hexosaminidases A and B.  相似文献   

9.
The activator protein for the degradation of glycolipids GM2 and GA2 by hexosaminidase A was purified some 2 500-fold from normal human kidney. It has a molecular weight of approximately 25 000 is heat-stable up to 60 degrees C, possesses an isoelectric point of pH 4.8 and is digestible by proteases. Enzymic degradation of the lipid substrates in the presence of this activator proceeds optimally at pH 4.2. The mode of action of the activator was also studied: the protein most probably complexes lipid molecules and presents them to the enzyme which otherwise cannot attack the aggregates formed by the lipids in aqueous solution. The hydrolysis of water-soluble synthetic substrates is not affected by the activator protein. The activator is highly specific for hexosaminidase A: hydrolysis of glycolipids GA2 and GM2 by the hexosaminidase B isoenzyme is almost not enhanced by this protein. The isoenzymes' lipid substrate specificity measured in the presence of the activator is entirely different from that obtained with detergents and can satisfactorily account for the lipid storage pattern observed in patients with variant forms of infantile GM2- gangliosidosis.  相似文献   

10.
4-O-Methylglucuronic acid (MeGlcA) side groups attached to the xylan backbone through α-1,2 linkages are converted to hexenuronic acid (HexA) during alkaline pulping. α-Glucuronidase (EC 3.2.1.139) hydrolyzes 1,2-linked MeGlcA from xylooligosaccharides. To determine whether α-glucuronidase can also hydrolyze HexA-decorated xylooligosaccharides, a gene encoding α-glucuronidase (AguA) was cloned from Paenibacillus curdlanolyticus B-6. The purified protein degraded hexenuronosyl xylotriose (ΔX3), a model substrate prepared from kraft pulp. AguA released xylotriose and HexA from ΔX3, but the Vmax and kcat values for ΔX3 were lower than those for MeGlcA, indicating that HexA side groups may affect the hydrolytic activity. To explore the potential for biological bleaching, ΔX3 degradation was performed using intracellular extract from P. curdlanolyticus B-6. The intracellular extract, with synergistic α-glucuronidase and β-xylosidase activities, degraded ΔX3 to xylose and HexA. These results indicate that α-glucuronidase can be used to remove HexA from ΔX3 derived from pulp, reducing the need for chemical treatments in the pulping process.  相似文献   

11.
Determination of the uv absorption spectra of 4-MUF-GlcNAc and 4-MUF showed them to differ significantly at 350 nm. This finding was applied to the enzymatic hydrolysis of fluorogenic 4-MUF-O-substituted substrates with a continuous, spectrophotometric assay procedure. With the use of this automated technique, selected kinetic properties, i.e., Ki, Km, and V, of “purified” liver N-acetyl-β-d-hexosaminidases A and B and of crystalline Jack bean meal hexosaminidase were determined and found to be in close agreement with previousy published data obtained by conventional single point assay methods. The described technique is fast, accurate, and permits instantaneous measurements of the kinetic properties of certain enzymes implicated in a number of genetic disorders.  相似文献   

12.
AGE-DEPENDENT VARIATIONS OF THE HUMAN N-ACETYL-β-D-HEXOSAMINIDASES   总被引:1,自引:1,他引:0  
The total N-acetyl-β-d -hexosaminidase (hexosaminidase A plus B) activity of the human brain increases during life until the age of 70 years to about twice the activity found in the foetal brain. This activity roughly parallels the increasing level of brain ganglio-sides. Simultaneously, the ratio between the hexosaminidases A and B changes from approx. 3.4 to 1.1 as established by the microscale isoelectric focussing of the enzymes from crude extracts. Age-dependent variations can be also demonstrated for other glycosidase activities: The β-d -glucosidase is shown to increase, the α-d -mannosidase and α-l -fucosidase to decrease during life. The enzyme values are related to the protein content, the age-dependent shift of which we have determined in the human brain. In different organs and body liquids distinct differences are found for the levels of the total hexosaminidase activity as well as for the hexosaminidase pattern. The relation of the hexosaminidase activity to the ganglioside degradation during the human development is discussed.  相似文献   

13.
Studies on the substrate specificity of hexosaminidase A and B from liver   总被引:6,自引:0,他引:6  
β-N-Acetylhexosaminidase A and B were partially purified from normal human liver using DEAE-cellulose column chromatography. Hexosaminidase B was also purified from the livers of patients who had died of Tay-Sachs disease. The hexosaminidase fractions were tested for their ability to hydrolyze the amino sugar moiety of synthetic substrates and of three amino sugar-containing glycolipids, GA2, globoside, and GM2.  相似文献   

14.
beta-N-Acetylhexosaminidase (hexosaminidase) I, which has an intermediate charge character between those of hexosaminidases A(alpha beta 2) and B[beta beta)2), was purified 1,500-fold from human placenta by procedures including chromatographies on concanavalin A (Con A)-Sepharose and an immunoadsorbent column. The isolated hexosaminidase I was heat-stable, and antigenically cross-reactive to anti-beta chain-IgG but not to anti-alpha chain-IgG. The results of substrate specificity experiments using 3H-labeled natural substrates indicated that the hexosaminidase I hydrolyzed Gb4Cer to Gb3Cer but not GM2 to GM3. The tryptic peptide map of the hexosaminidase I was similar to that of hexosaminidase B, though some differences were observed. The hexosaminidase I after treatment with neuraminidase or endo-beta-N-acetylglucosaminidase H was partly converted to less acidic forms. Treatment of the hexosaminidase I with acid phosphatase did not change the charge character. Therefore hexosaminidase I is an acidic variant form of hexosaminidase B, possibly resulting from sialylation and the presence of phosphodiester bonds at the carbohydrate moiety.  相似文献   

15.
Human beta-hexosaminidase (EC 3.2.1.52) is a lysosomal enzyme that hydrolyzes terminal N-acetylhexosamines from GM2 ganglioside, oligosaccharides, and other carbohydrate-containing macromolecules. There are two major forms of hexosaminidase: hexosaminidase A, with the structure alpha(beta a beta b), and hexosaminidase B, 2(beta a beta b). Like other lysosomal proteins, hexosaminidase is targeted to its destination via glycosylation and processing in the rough endoplasmic reticulum and Golgi apparatus. Phosphorylation of specific mannose residues allows binding of the protein to the phosphomannosyl receptor and transfer to the lysosome. In order to define the structure and placement of the oligosaccharides in mature hexosaminidase and thus identify candidate mannose 6-phosphate recipient sites, the major tryptic/chymotryptic glycopeptides from each isozyme were purified by reverse-phase high-performance liquid chromatography. Two major concanavalin A binding glycopeptides, localized to the beta b chain, and one non concanavalin A binding glycopeptide, localized to the beta a chain, were found associated with the beta-subunit in both hexosaminidase A and hexosaminidase B. A single major concanavalin A binding glycopeptide was found to be associated with the alpha subunit of hexosaminidase A. The oligosaccharide structures were determined by nuclear magnetic resonance spectrometry. Two of them, the alpha and one of the beta b glycans, contained a Man3-GlcNAc2 structure, while the remaining one on the beta b chain was composed of a mixture of Man5-7-GlcNAc2 glycans. The unique glycopeptide associated with the beta a chain contained a single GlcNAc residue. Thus, all three mature polypeptides comprising the alpha and beta subunits of hexosaminidase contain carbohydrate, the structures of which have the appearance of being partially degraded in the lysosome. In the alpha chain we found only one possible site for in vivo phosphorylation. In the beta it is unclear if only one or all three of the sites could have contained phosphate. However, mature placental hexosaminidase A and B can be rephosphorylated in vitro. This requires the presence of an oligosaccharide containing an alpha 1,2-linked mannose residue. Only the single Man6-7 (of the Man5-7-GlcNAc2 glycans) containing site on the beta b chain retains this type of residue. Therefore, this site may act as the sole in vitro substrate in both of the mature isozymes for the phosphotransferase.  相似文献   

16.
A hexosaminidase from autolyzed cultures of Aspergillus nidulans was purified 196 fold and characterized as a beta-N-acetylglucosaminidase (EC 3.2.1.30). The enzyme has a MW of 190000, a pI of 4.3, and optimum pH of 5.0 and is unstable at temperatures above 50 degrees C. The enzyme is a glycoprotein with 19.5% sugars, mannose being the principal component. It binds strongly to chitin. The enzyme hydrolyzes different substrates. The Ki with the competitive inhibitor 2-acetamido-2-deoxy-D-gluconolactone was independent of the substrate used. The enzyme was inhibited by Hg2+, Ag+, acetate and other organic anions. The kinetics of hydrolysis of chitin oligosaccharides from 2 to 6 units was studied by HPLC. This enzyme is an exoenzyme which degraded chitin oligomers gradually with the production of N-acetylglucosamine. The hydrolysis of N-N'-diacetylchitobiose was inhibited non-competitively by glucosamine and N-acetylglucosamine. In mixtures of chitin oligosaccharides, the hydrolysis of chitobiose was competitively inhibited by each of the other oligomers.  相似文献   

17.
Paenibacillus sp. A11 produced an intracellular cyclodextrinase (CDase), its presence was confirmed by activity detection on an agar plate with specific screening medium containing β-cyclodextrin (β-CD) and phenolphthalein. The CDase was purified up to 22-fold with a 28% yield. The enzyme was a single polypeptide with a molecular weight of 80 kDa. Optimum activity was at pH 7.0 and 40 °C. The enzyme had an isoelectric point of 5.4 and N-terminal sequence was M F L E A V Y H R P R K N W S. When relative hydrolytic activities of the CDase on different substrates were compared, it was found that high specificity was exerted by β-CD while maltoheptaose, its linear counterpart, was only 40% as active. The enzyme recognized α-1,4-glucose units and the hydrolysis depended on the size of oligosaccharides. Highly branched carbohydrates such as glycogen or dextran or other heteropolymers as glucomannan could not be hydrolyzed. This enzyme was different from other CDases in its ability to hydrolyze maltose and trehalose, though with very low hydrolytic activity. The major product from all substrates was maltose. The kcat/Km value for β-CD was 8.28 × 105 M−1min−1. The enzyme activity was completely inactivated by 1 mM N-bromosuccinimide and diethylpyrocarbonate suggesting the crucial importance of Trp and His for its catalytic activity. Essential Trp was confirmed to be at enzyme active site by substrate protection experiment. Partial inactivation by 5 mM phenylglyoxal suggests the involvement of Arg, which has never been reported in other CDases.  相似文献   

18.
The bacteriolytic enzyme with an isoelectric point of 9.5 that is produced by all strains of Staphylococcus aureus investigated was purified from strain M18 (Wadström & Hisatsune, 1970). This enzyme released reducing groups from cell walls of Micrococcus lysodeikticus and was thus shown to be a bacteriolytic hexosaminidase. Although dinitrophenylation and acid hydrolysis of cell walls hydrolysed by a partially purified enzyme gave DNP-alanine and DNP-glycine from staphylococcal peptidoglycan, which indicated the presence of a peptidase and probably also an N-acetylmuramyl-l-alanine amidase, hydrolysis of cell walls by the extensively purified enzyme did not give any DNP-amino acids. The enzyme digest was purified by Amberlite CG-120 and Sephadex G-10 chromatography. Reduction by sodium borohydride of the disaccharide obtained was followed by acid hydrolysis and paper chromatography. Glucosamine completely disappeared after this treatment and a new spot identical with glucosaminitol appeared. The muramic acid spot remained unchanged. The purified enzyme was found to be devoid of exo-β-N-acetylglucosaminidase activity. These results are compatible with the action of a bacteriolytic endo-β-N-acetylglucosaminidase. It is also proposed that this enzyme is probably identical with the staphylococcal lysozyme. The mode of action of this has not previously been investigated.  相似文献   

19.
The green rice leafhopper, Nephotettix cincticeps (Uhler), is an insect pest of rice and discharges β-glucosidase (EC 3.2.1.21) from its salivary glands during feeding. To investigate the biological function of this enzyme, we purified it from the heads of 18,000 adult females by acetone precipitation and a series of chromatography steps: gel filtration, cation-exchange chromatography, metal-affinity chromatography and hydrophobic interaction chromatography. During cation-exchange chromatography, β-glucosidases were eluted in three peaks (isozymes). These β-glucosidases were monomeric proteins of 58 kDa as estimated by SDS-PAGE and 62 kDa based on gel filtration. All of the purified β-glucosidase isozymes exhibited maximum activity for p-nitrophenyl β-glucoside (NPGlc) and p-nitrophenyl β-galactopyranoside (NPGal) at pH 5.5 and 5.0, respectively. There was no significant difference in substrate specificity among the three isozymes. The Km values were estimated to be 0.13 μM for NPGlc and 0.9 μM for NPGal. Among the oligosaccharide substrates examined, laminaribiose (Glc β1-3 Glc) was the most extensively hydrolyzed, sophorose (Glc β1-2 Glc) and cellobiose (Glc β1-4 Glc) were comparatively well hydrolyzed, and gentiobiose (Glc β1-6 Glc), lactose (Gal β1-4 Glc), laminaritriose, cellotriose and cellotetraose were poorly hydrolyzed. Among the glycoside substrates examined, salicin was considerably well hydrolyzed. β-Glucosidase was detected in the salivary sheaths by activity staining with a fluorescent substrate. The salivary β-glucosidase of N. cincticeps may be involved in the hydrolysis of a phenol glucoside present in the saliva, which is a step in the solidification of gelling saliva to form salivary sheaths.  相似文献   

20.
Antisera were raised to a partially purified preparation of human liver hexosaminidase and to highly purified preparations of hexosaminidase isoenzymes A and B. All the antisera precipitated the enzyme in an enzymically active form, which could be located on immunodiffusion and immunoelectrophoretic gels by using a histochemical substrate. The antisera to the purified isoenzymes were shown to react with hexosaminidase from human liver, kidney, brain and spleen, but did not cross-react with human liver beta-glucosidase, beta-galactosidase, alpha-mannosidase, beta-xylosidase, arylsulphatase or acid phosphatase. Hexosaminidases A and B were immunologically identical. The immunological properties of the hexosaminidases from livers of patients with three types of GM(2)-gangliosidoses were closely similar. No evidence could be found for cross-reacting material in enzyme-deficient states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号