首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C A Roeske  M H O'Leary 《Biochemistry》1985,24(7):1603-1607
The carbon isotope effect at CO2 has been measured in the carboxylation of ribulose 1,5-bisphosphate by the ribulosebisphosphate carboxylase from Rhodospirillum rubrum. The isotope effect is obtained by comparing the isotopic composition of carbon 1 of the 3-phosphoglyceric acid formed in the reaction with that of the carbon dioxide source. A correction is made for carbon 1 of 3-phosphoglyceric acid which arises from carbon 3 of the starting ribulose bisphosphate. The isotope effect is k12/k13 = 1.0178 +/- 0.0008 at 25 degrees C, pH 7.8. This value is smaller than the corresponding value for the spinach enzyme. It appears that substrate addition with the R. rubrum enzyme is principally ordered, with ribulose bisphosphate binding first, whereas substrate addition is random with the spinach enzyme. The carboxylation step is partially rate limiting with both enzymes.  相似文献   

2.
Phosphofructokinase from Lactobacillus delbrueckii subspecies bulgaricus (LbPFK) has been reported to be a nonallosteric analogue of phosphofructokinase from Escherichia coli at pH 8.2 [Le Bras et al. (1991) Eur. J. Biochem. 198, 683-687]. A reexamination of the kinetics of this enzyme shows LbPFK to have limited binding affinity toward the allosteric ligands, MgADP and PEP, with dissociation constants of approximately 20 mM for both. Their allosteric effects are observed only at high concentrations of these ligands, with both exhibiting inhibitory effects on substrate binding. No pH dependence was observed for the binding and the influence of MgADP and PEP on the enzyme. To attempt to explain these results, the crystal structure of LbPFK was solved using molecular replacement to 1.86 A resolution. A comparative study of the LbPFK structure with that of phosphofructokinases from E. coli (EcPFK) and Bacillus stearothermophilus (BsPFK) reveals a structure with conserved fold and substrate binding site. The effector binding site, however, shows many differences that could explain the observed decreases in binding affinity for MgADP and PEP in LbPFK as compared to the other two enzymes.  相似文献   

3.
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) regulatory properties were studied in non-photosynthetic (mesocarp) and photosynthetic (peel) tissues from cherimoya (Annona cherimola Mill.) fruit stored in air, in order to gain a better understanding of in vivo enzyme regulation. Analyses were also performed with fruit treated with 20% CO(2)-20% O(2) to define the role of PEPC as part of an adaptive mechanism to high external carbon dioxide levels. The results revealed that the special kinetic characteristics of the enzyme from mesocarp--high V(max) and low sensibility to L-malate inhibition - are related to the active acid metabolism of these fruits and point to a high rate of reassimilation of respired CO(2) into keto-acids. With respect to fruit stored in air, PEPC in crude extracts from CO(2)-treated cherimoyas gave a similar V(max) (1.12+/-0.03 microkat x mg(-1) protein), a lower apparent K(m) (68+/-9 microM for PEP) and a higher I(50) of L-malate (5.95+/-0.3 mM). These kinetic values showed the increase in the affinity of this enzyme toward one of its substrate, PEP, by elevated external CO(2) concentrations. The lower K(m) value and lower sensitivity to L-malate are consistent with higher in vivo carboxylation reaction efficiency in CO(2)-treated cherimoyas, while pointing to an additional enzyme regulation system via CO(2).  相似文献   

4.
The catalytic mechanism of phosphoenolpyruvate (PEP) carboxylase from Zea mays has been studied using (Z)- and (E)-3-fluorophosphoenolpyruvate (F-PEP) as substrates. Both (Z)- and (E)-F-PEP partition between carboxylation to produce 3-fluorooxalacetate and hydrolysis to produce 3-fluoropyruvate. Carboxylation accounts for 3% of the reaction observed with (Z)-F-PEP, resulting in the formation of (R)-3-fluorooxalacetate, and for 86% of the reaction of (E)-F-PEP forming (S)-3-fluorooxalacetate. Carboxylation of F-PEP occurs on the 2-re face, which corresponds to the 2-si face of PEP. The partitioning of F-PEP between carboxylation and hydrolysis is insensitive to pH but varies with metal ion. Use of 18O-labeled bicarbonate produces phosphate that is multiply labeled with 18O; in addition, 18O is also incorporated into residual (Z)- and (E)-F-PEP. The 13(V/K) isotope effect on the carboxylation of F-PEP catalyzed by PEP carboxylase at pH 8.0, 25 degrees C, is 1.049 +/- 0.003 for (Z)-F-PEP and 1.009 +/- 0.006 for (E)-F-PEP. These results are consistent with a mechanism in which carboxylation of PEP occurs via attack of the enolate of pyruvate on CO2 rather than carboxy phosphate. In this mechanism phosphorylation of bicarbonate to give carboxy phosphate and decarboxylation of the latter are reversible steps. An irreversible step, however, precedes partitioning between carboxylation to give oxalacetate and release of CO2, which results in hydrolysis of PEP.  相似文献   

5.
Addition of MgADP to skinned skeletal muscle fibers causes a rise in Ca(2+)-activated isometric tension. Mechanisms underlying this tension increase have been investigated by rapid photogeneration of ADP within skinned single fibers of rabbit psoas muscle. Photolysis of caged ADP (P2-1(2-nitrophenyl)ethyladenosine 5'-diphosphate) resulted in an exponential increase in isometric tension with an apparent rate constant, kADP, of 9.6 +/- 0.3 s-1 (mean +/- SE, n = 28) and an amplitude, PADP, of 4.9 +/- 0.3% Po under standard conditions (0.5 mM photoreleased MgADP, 4 mM MgATP, pH 7.0, pCa 4.5, 0.18 M ionic strength, 15 degrees C). PADP depended upon the concentration of photoreleased MgADP as well as the concentration of MgATP. A plot of 1/PADP vs. 1/[MgADP] at three MgATP concentrations was consistent with competition between MgADP and MgATP for the same site on the crossbridge. The rate of the transient, kADP, also depended upon the concentration of MgADP and MgATP. At both 4 and 1 mM MgATP, kADP was not significantly different after photorelease of 0.1-0.5 mM MgADP, but was reduced by 28-40% when 3.5 mM MgADP was added before photorelease of 0.5 mM MgADP. kADP was accelerated by about twofold when MgATP was varied from 0.5 to 8 mM MgATP. These effects of MgATP and MgADP were not readily accounted for by population of high force-producing states resulting from reversal of the ADP dissociation process. Rather, the results suggest that competition between MgADP and MgATP for crossbridges at the end of the cycle slows detachment leading to accumulation of force-generating crossbridges. Elevation of steady- state Pi concentration from 0.5 to 30 mM caused acceleration of kADP from 10.2 +/- 0.5 to 27.8 +/- 1.8 s-1, indicating that the tension rise involved crossbridge flux through the Pi dissociation step of the cycle.  相似文献   

6.
Flow dialysis was used to study the binding of MgATP and MgADP to the nitrogenase proteins of Azotobacter vinelandii. Both reduced and oxidized Av2 bind two molecules of MgADP, with the following dissociation constants: reduced Av2, K1 = 0.091 +/- 0.021 mM and K2 = 0.044 +/- 0.009 mM; oxidized Av2, K1 = 0.024 +/- 0.015 mM and K2 = 0.039 +/- 0.022 mM. Binding of MgADP to reduced Av2 shows positive co-operativity. Oxidized Av2 binds two molecules of MgATP with dissociation constants K1 = 0.049 +/- 0.016 mM and K2 = 0.18 +/- 0.05 mM. Binding data of MgATP to reduced Av2 can be fitted by assuming one binding site, but a better fit was obtained by assuming two binding sites on the protein with negative co-operativity and with dissociation constants K1 = 0.22 +/- 0.03 mM and K2 = 1.71 +/- 0.50 mM. It was found that results concerning the number of binding sites and the dissociation constants of MgATP-Av2 and MgADP-Av2 complexes depend to a great extent on the specific activity of the Av2 preparation used, and that it is difficult to correct binding data for inactive protein. No binding of MgADP to Av1 could be demonstrated. Binding studies of MgADP to a mixture of Av1 and Av2 showed that Av1 did not affect the binding of MgADP to either oxidized or reduced Av2. Inhibition studies were performed to investigate the interaction of MgATP and MgADP binding to oxidized and reduced Av2. All the experimental data can be explained by the minimum hypothesis, i.e. the presence of two adenine nucleotide binding sites on Av2. MgATP and MgADP compete for these two binding sites on the Fe protein.  相似文献   

7.
A capnophilic rumen bacterium Mannheimia succiniciproducens produces succinic acid as a major fermentation end product under CO(2)-rich anaerobic condition. Since succinic acid is produced by carboxylation of C3 compounds during the fermentation, intracellular CO(2) availability is important for efficient succinic acid formation. Here, we investigated the metabolic responses of M. succiniciproducens to the different dissolved CO(2) concentrations (0-260 mM). Cell growth was severely suppressed when the dissolved CO(2) concentration was below 8.74 mM. On the other hand, cell growth and succinic acid production increased proportionally as the dissolved CO(2) concentration increased from 8.74 to 141 mM. The yields of biomass and succinic acid on glucose obtained at the dissolved CO(2) concentration of 141 mM were 1.49 and 1.52 times higher, respectively, than those obtained at the dissolved CO(2) concentration of 8.74 mM. It was also found that the additional CO(2) source provided in the form of NaHCO(3), MgCO(3), or CaCO(3) had positive effects on cell growth and succinic acid production. However, growth inhibition was observed when excessive bicarbonate salts were added. By the comparison of the activities of key enzymes, it was found that PEP carboxylation by PEP carboxykinase (PckA) is the most important for succinic acid production as well as the growth of M. succiniciproducens by providing additional ATP.  相似文献   

8.
Carbon: terrestrial C4 plants   总被引:1,自引:1,他引:0  
The carbon isotope composition of terrestrial C4 plants depends on the primary carboxylation of phosphoenolpyruvate (PEP) and on the diffusion of CO2 to the carboxylation sites, but is also influenced by the final carboxylation of ribulose-1,5-bisphosphate (RuBP). Several models have been used for reproducing this complex situation. In the present review, a particular model is applied as a means to interpret the effects of environmental and genetically determined factors on carbon isotope discrimination during C4 photosynthesis. As a new feature, the model considers four types of limitation of the overall CO2 assimilation rate. Both carboxylation reactions are assumed to be limited by either maximum enzyme activity or maximum substrate regeneration rate. The model is applied to experimental data on the effects of CO2, irradiance and water stress on short-term discrimination by leaves of several C4 species measured simultaneously with CO2 gas exchange characteristics. In particular, different patterns of the influence of low irradiances on carbon isotope discrimination are interpreted as due to variations in that irradiance at which a transition from limitation by PEP regeneration rate and RuBP carboxylase activity to limitation by the regeneration rates of both substrates occurs. After discussing literature data on the effects of environmental conditions on carbon isotope discrimination by C4 plants seasonal and developmental changes in carbon isotope composition, studies on the systematic and geographic distribution of C4 plants, evolutionary and genetical aspects, and some ecological implications are reviewed.  相似文献   

9.
The active species of "CO(2)" and the amount of fractionation of stable carbon isotopes have been determined for a partially purified preparation of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) from corn (Zea mays) leaves. The rates of the enzyme reactions, using substrate amounts of HCO(3) (-), CO(2) or CO(2) plus carbonic anhydrase, show that HCO(3) (-) is the active species of "CO(2)" utilized by PEP carboxylase. The K(m) values for CO(2) and HCO(3) (-) are 1.25 mm and 0.11 mm, respectively, which further suggest the preferential utilization of HCO(3) (-) by PEP carboxylase. The amount of fractionation of stable carbon isotopes by PEP carboxylase from an infinite pool of H(12)CO(3) (-) and H(13)CO(3) (-) was -2.03 per thousand. This enzyme fractionation (delta), together with the fractionation associated with absorption of CO(2) into plant cells and the equilibrium fractionation associated with atmospheric CO(2) and dissolved HCO(3) (-) are discussed in relation to the fractionation of stable carbon isotopes of atmospheric CO(2) during photosynthesis in C(4) plants.  相似文献   

10.
S J O'Keefe  J R Knowles 《Biochemistry》1986,25(20):6077-6084
To investigate the mechanism of the carboxylation of pyruvate to oxalacetate catalyzed by the enzyme transcarboxylase, we have measured the D(V/K) and 13(V/K) isotope effects. Comparison of the double-reciprocal plots of the initial velocities with [1H3]pyruvate and with [2H3]pyruvate as substrate yields a deuterium isotope effect on Vmax/Km of 1.39 +/- 0.04. The 13C kinetic isotope effect on the carboxylation of pyruvate to oxalacetate has been measured by the competitive method and is 1.0227 +/- 0.0008. To determine whether the removal of the proton from pyruvate and the addition of the carboxyl group occur in the same or in different steps, the double-isotope fractionation test has been used. When [2H3]pyruvate replaces [1H3]pyruvate as the substrate, the observed 13(V/K) isotope effect falls from 1.0227 to 1.0141 +/- 0.001. The latter value is in excellent agreement with the value of 1.0136, predicted for a stepwise pathway. We may conclude, therefore, that the carboxylation of pyruvate catalyzed by transcarboxylase proceeds by a stepwise mechanism involving the intermediate formation of the substrate carbanion.  相似文献   

11.
[35S]Adenosine-5'-phosphosulfate (APS) binding to Penicillium chrysogenum APS kinase was measured by centrifugal ultrafiltration. APS did not bind to the free enzyme with a measurable affinity even at low ionic strength where substrate inhibition by APS is quite marked. However, APS bound with an apparent Kd of 0.54 microM in the presence of 5 mM MgADP. In the presence of 0.1 M (NH4)2SO4, Kd,app was increased to 2.1 +/- 0.7 microM. Bound [35S]APS was displaced by low concentrations of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), or iso-(2') PAPS, or (less efficiently) by adenosine-3,5'-diphosphate (PAP) or adenosine-5'-monosulfate (AMS). The results support our conclusion that substrate inhibition of the fungal enzyme by APS results from the formation of a dead end E. MgADP.APS complex. That is, APS binds to the subsite vacated by PAPS in the compulsory (or predominately) ordered product release sequence (PAPS before MgADP). Radioligand displacement was used to verify the Kd for APS dissociation from E.MgADP.APS and to determine the Kd values for the dissociation of iso-PAPS (13 +/- 5 microM), PAP (4.8 mM), or AMS (5.2 mM) from their respective ternary enzyme.MgADP.ligand complexes. Incubation of the fungal enzyme with [gamma-32P]MgATP did not yield a phosphoenzyme that survives gel filtration or gel electrophoresis.  相似文献   

12.
The carboxylation kinetic (stable carbon) isotope effect was measured for purified d-ribulose-1,5-bisphosphate carboxylases/oxygenases (Rubiscos) with aqueous CO(2) as substrate by monitoring Rayleigh fractionation using membrane inlet mass spectrometry. This resulted in discriminations (Delta) of 27.4 +/- 0.9 per thousand for wild-type tobacco Rubisco, 22.2 +/- 2.1 per thousand for Rhodospirillum rubrum Rubisco, and 11.2 +/- 1.6 per thousand for a large subunit mutant of tobacco Rubisco in which Leu(335) is mutated to valine (L335V). These Delta values are consistent with the photosynthetic discrimination determined for wild-type tobacco and transplastomic tobacco lines that exclusively produce R. rubrum or L335V Rubisco. The Delta values are indicative of the potential evolutionary variability of Delta values for a range of Rubiscos from different species: Form I Rubisco from higher plants; prokaryotic Rubiscos, including Form II; and the L335V mutant. We explore the implications of these Delta values for the Rubisco catalytic mechanism and suggest that Rubiscos that are associated with a lower Delta value have a less product-like carboxylation transition state and/or allow a decarboxylation step that evolution has excluded in higher plants.  相似文献   

13.
The biosynthesis of S-adenosylmethionine occurs in a unique enzymatic reaction in which the synthesis of the sulfonium center results from displacement of the entire polyphosphate chain from MgATP. The mechanism of S-adenosylmethionine synthetase (ATP:L-methionine s-adenosyltransferase) from Escherichia coli has been characterized by kinetic isotope effect and substrate trapping measurements. Replacement of 12C by 14C at the 5' carbon of ATP yields a primary Vmax/Km isotope effect (12C/14C) of 1.128 +/- 0.003 in the absence of added monovalent cation activator (K+). At saturating K+ concentrations (10 mM) the primary isotope effect diminishes slightly to 1.108 +/- 0.003, indicating that the step in the mechanism involving bond breaking at the 5' carbon of MgATP has a small commitment to catalysis at conditions near Vmax. No alpha-secondary 3H isotope effect from [5'-3H]ATP was detected, (1H/3H) = 1.000 +/- 0.002, even in the absence of KCl. There was no significant primary sulfur isotope effect from [35S]methionine at KCl concentrations from 0 to 10 mM. Substitution of the methyl group of methionine with tritium yielded a beta-secondary isotope effect (CH3/C3H3) = 1.009 +/- 0.008 independent of KCl concentration. The reaction of selenomethionine and [5'-14C]ATP gave a primary isotope effect of 1.097 +/- 0.006, independent of KCl concentration. Substrate trapping experiments demonstrated that the step in the mechanism involving bond making to sulfur of methionine does not have a significant commitment to catalysis at 0.25 mM KCl, therefore intrinsic isotope effects were observed. Substrate trapping experiments indicated that the step involving bond breaking at carbon 5' of MgATP has a 10% commitment to catalysis at 0.25 mM KCl. The isotope effects are interpreted in terms of an Sn2-like transition state structure in which bonding of the C5' is symmetric with respect to the departing tripolyphosphate group and the incoming sulfur of methionine. With selenomethionine as substrate an earlier transition state is implicated.  相似文献   

14.
Pérez E  Espinoza R  Laiveniekcs M  Cardemil E 《Biochimie》2008,90(11-12):1685-1692
The stereochemistry of CO(2) addition to phosphoenolpyruvate (PEP) to yield oxaloacetate catalyzed by ATP-dependent Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens PEP carboxykinases was determined using (Z)-3-fluorophosphoenolpyruvate ((Z)-F-PEP) as a substrate analog. A. succiniciproducens and S. cerevisiae PEP carboxykinases utilized (Z)-F-PEP with 1/14 and 1/47 the respective K(m) values for PEP. On the other hand, in the bacterial and yeast enzymes k(cat) was reduced to 1/67 and 1/48 the value with PEP, respectively. The binding affinity of pyridoxylphosphate-labeled S. cerevisiae and A. succiniciproducens PEP carboxykinases for PEP and (Z)-F-PEP was checked and found to be of similar magnitude for both substrates, suggesting that the lowered K(m) values for the fluorine-containing PEP analog are due to kinetic effects. The lowered k(cat) values when using (Z)-F-PEP as substrate suggest that the electron withdrawing effect of fluorine affects the nucleophilic attack of the double bond of (Z)-F-PEP to CO(2). For the stereochemical analyses, the carboxylation of (Z)-F-PEP was coupled to malate dehydrogenase to yield 3-fluoromalate, which was analyzed by (19)F NMR. The fluoromalate obtained was identified as (2R, 3R)-3-fluoromalate for both the A. succiniciproducens and S. cerevisiae PEP carboxykinases, thus indicating that CO(2) addition to (Z)-F-PEP, and hence PEP, takes place through the 2-si face of the double bond. These results, together with previously published data [Rose, I.A. et al. J. Biol. Chem. 244 (1969) 6130-6133; Hwang, S.H. and Nowak, T. Biochemistry 25 (1986) 5590-5595] indicate that PEP carboxykinases, no matter their nucleotide specificity, catalyze the carboxylation of PEP from the 2-si face of the double bond.  相似文献   

15.
All kinases require an essential divalent metal for their activity. In this study, we investigated the metal dependence of cyclin-dependent kinase 4 (CDK4). With Mg(2+) as the essential metal and MgATP being the variable substrate, the maximum velocity, V, was not affected by changes in metal concentration, whereas V/K was perturbed, indicating that the metal effects were mainly derived from a change in the K(m) for MgATP. Analysis of the metal dependence of initial rates according to a simple metal binding model indicated the presence on enzyme of one activating metal-binding site with a dissociation constant, K(d(a)), of 5 +/-1 mM, and three inhibitory metal-binding sites with an averaged dissociation constant, K(d(i)), of 12+/-1 mM and that the binding of metal to the activating and inhibitory sites appeared to be ordered with binding of metal to the activating site first. Substitution of Mn(2+) for Mg(2+) yielded similar metal dependence kinetics with a value of 1.0+/-0.1 and 4.7+/-0.1 for K(d(a)) and K(d(i)), respectively. The inhibition constants for the inhibition of CDK4 by MgADP and a small molecule inhibitor were also perturbed by Mg(2+). K(d(a)) values estimated from the metal variation of the inhibition of CDK4 by MgADP (6+/-3 mM) and a small molecule inhibitor (3+/-1 mM), were in good agreement with the K(d(a)) value (5+/-1 mM) obtained from the metal variation of the initial rate of CDK4. By using the van't Hoff plot, the temperature dependence of K(d(a)) and K(d(i)) yielded an enthalpy of -6.0 +/- 1.1 kcal/mol for binding of Mg(2+) to the activating site and -3.2 +/- 0.6 kcal/mol for Mg(2+) binding to the inhibitory sites. The values of associated entropy were also negative, indicating that these metal binding reactions were entirely enthalpy-driven. These data were consistent with metal binding to multiple sites on CDK4 that perturbs the enzyme structure, modulates the enzyme activity, and alters the affinities of inhibitor for the metal-bound enzyme species. However, the affinities of small molecule inhibitors for CDK4 were not affected by the change of metal from Mg(2+) to Mn(2+), suggesting that the structures of enzyme-Mg(2+) and enzyme-Mn(2+) were similar.  相似文献   

16.
Recombinant rabbit muscle creatine kinase (CK) was titrated with MgADP in 50 mM Bicine and 5 mM Mg(OAc)2, pH 8.3, at 30.0 degrees C by following a decrease in the protein's intrinsic fluorescence. In the presence of 50 mM NaOAc, but in the absence of added creatine or nitrate, MgADP has an apparent K(d) of 135 +/- 7 microM, and the total change in fluorescence on saturation (Delta%F) is 15.3 +/- 0.3%. Acetate was used as the anion in this experiment because it does not promote the formation of a CK.MgADP.anion.creatine transition-state analogue complex (TSAC) [Millner-White and Watts (1971) Biochem. J. 122, 727-740]. In the presence of 80 mM creatine, but no nitrate, the apparent K(d) for MgADP remains essentially unchanged at 132 +/- 10 microM, while Delta%F decreases slightly to 13.2 +/- 0.3%. In the presence of 10 mM nitrate, but no creatine, the apparent K(d) is once again essentially unchanged at 143 +/- 23 microM, but the Delta%F is markedly reduced to 4.2 +/- 0.2%. The presence of both 10 mM nitrate and 80 mM creatine during titration reduces the apparent K(d) for MgADP 10-fold to 13.7 +/- 0.7 microM, and Delta%F increases to 20.6 +/- 0.3%, strongly suggesting that the simultaneous presence of saturating levels of creatine and nitrate increases the affinity of CK for MgADP and promotes the formation of the enzyme*MgADP*nitrate*creatine TSAC. When the fluorescence of CK was titrated with MgADP in the presence of 80 mM creatine and fixed saturating concentrations of various anions, apparent K(d) values for MgADP of 132 +/- 10 microM, 25.2 +/- 1.3 microM, 18.8 +/- 0.9 microM, 13.7 +/- 0.7 microM, and 6.4 +/- 0.7 microM were observed as the anion was changed from acetate to formate to chloride to nitrate to nitrite, respectively. This is the same trend reported by Millner-White and Watts for the effectiveness of various monovalent anions in forming the CK.MgADP.anion.creatine TSAC. On titration of CK with MgADP in the presence of 80 mM creatine and various fixed concentrations of NaNO3, the apparent K(d) for MgADP decreases with increasing fixed concentrations of nitrate. A plot of the apparent K(d) for MgADP vs [NO3-] suggests a K(d) for nitrate from the TSAC of 0.39 +/- 0.07 mM. Similarly, titration with MgADP in the presence of 10 mM NaNO3 and various fixed concentrations of creatine gives a value of 0.9 +/- 0.4 mM for the dissociation of creatine from the TSAC. The data were used to calculate K(TDAC), the dissociation constant of the quaternary TSAC into its individual components, of 3 x 10(-10) M3. To our knowledge this is the first reported dissociation constant for a ternary or quaternary TSAC.  相似文献   

17.
A Lack  G Fuchs 《Journal of bacteriology》1992,174(11):3629-3636
Several lines of evidence indicate that the first step in the anaerobic metabolism of phenol is phenol carboxylation to 4-hydroxybenzoate; this reaction is considered a biological Kolbe-Schmitt carboxylation. A phenol carboxylase system was characterized by using a denitrifying Pseudomonas strain, K 172, which catalyzes an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. The enzymatic isotope exchange activity (100 nmol min-1 mg-1 of protein) requires Mn2+ and K+. We show that this system also catalyzes the carboxylation of phenylphosphate (the phosphoric acid monophenyl ester) to 4-hydroxybenzoate and phosphate. The specific activity of phenylphosphate carboxylation at the optimal pH of 6.5 is 12 nmol of CO2 fixed min-1 mg-1 of protein. Phenylphosphate cannot be replaced by Mg(2+)-ATP and phenol. The carboxylase activity requires Mn2+ but, in contrast to the isotope exchange activity, does not require K+. The apparent Km values are 1.5 mM dissolved CO2 and 0.2 mM phenylphosphate. Several convenient assays for phenylophosphate carboxylation are described. The isotope exchange reaction and the net carboxylation reaction are catalyzed by the same oxygen-sensitive enzyme, which has a half-life in an air-saturated solution of less than 1 min. Both activities cochromatographed with a protein with a Mr of 280,000, and both activities were induced only after anaerobic growth on phenol. The carboxylation of phenylphosphate suggests that phenylphosphate itself is the physiological CO2 acceptor molecular of this novel CO2 fixation reaction. Alternatively, phenylphosphate could simulate the unknown natural precursor. It is suggested that the formation of an enzyme-bound phenolate anion from the activated phenolic compound is the rate-determining step in the carboxylation reaction.  相似文献   

18.
Binding constants for the nucleotide substrates were determined in two different crystalline forms of pig muscle 3-phosphoglycerate kinase (PGK): the binary complex with 3-phosphoglycerate (3-PG) in which the two domains are in an open conformation (Harlos, Vas, and Blake (1992) Proteins, 12, 133-144) and the ternary complex with 3-PG and the Mg salt of the ATP analogue, beta,gamma-methyleneadenosine-5'-triphosphate (AMP-PCP), the structure of which is under resolution. Competitive titrations have been performed in the presence of the chromophoric analogue of ATP, 2'3'-O-(2,4,6-trinitrophenyl)ATP (TNP-ATP), similar to those previously carried out in solution, where a weakening of the binding of the nucleotide substrates in the presence of the other substrate, 3-PG, has been observed (Vas, Merli, and Rossi (1994) Biochem. J. 301, 885-891). Here the K(d) values for MgADP were found to be 0.096 +/- 0.021 and 0.045 +/- 0.016 mM, respectively, for the crystals of the binary and ternary complexes. Both K(d) values are significantly smaller than the one obtained in solution in the presence of 3-PG (0.38 +/- 0.05 mM) and are close to the values determined in solution in the absence of 3-PG (0.06 +/- 0.01 mM). Thus, the "substrate antagonism" observed in solution is not present in either of the investigated crystal forms. Further nucleotide binding studies with the solubilized enzyme have shown that 3-PG has no effect on ADP (Mg(2+)-free) binding (K(d) = 0.34 +/- 0.05 mM), while it weakens MgADP binding. Thus, 3-PG abolishes the strengthening effect of the Mg(2+) ion on the binding of ADP. This phenomenon is apparently due to the interaction between the carboxyl group of 3-PG and the protein, since the carboxyl-lacking analogue glycerol-3-phosphate has no detectable effect on MgADP binding. Comparison of the crystallographic data of different PGK binary (with either 3-PG or MgADP) and ternary (with both 3-PG and MgADP) complexes, having open and closed conformations, respectively, provides a possible structural explanation of the substrate antagonism. We suggest that the specific interaction between the 3-PG carboxylic group and a conserved arginine side chain is changed during domain closure, and, through interdomain communication, this change may be transmitted to the site in which Mg(2+) binds the ADP phosphates. This effect is abolished in the crystals of pig muscle PGK, in which lattice forces stabilize the open domain conformation.  相似文献   

19.
Pig muscle 3-phosphoglycerate kinase was complexed with 1-anilino-8-naphthalenesulfonate (ANS) in order to monitor the binding of substrates to the enzyme. The enzyme-dye interaction did not influence the enzymic activity under the experimental conditions used. By measuring the substrate-dependent change in the fluorescence emission of ANS molecules tightly bound to the enzyme (Kd less than or equal to 0.05 mM), fluorimetric titrations were carried out in 0.1 M Tris/HCl buffer pH 7.5, containing 5 mM mercaptoethanol, at 20 degrees C. The dissociation constants obtained for the separate bindings of 3-phosphoglycerate, MgATP, 1,3-bisphosphoglycerate and MgADP were 0.03 +/- 0.01 mM, 0.15 +/- 0.10 mM, 0.00005 +/- 0.00001 mM and 0.15 +/- 0.10 mM respectively. binding of 3-phosphoglycerate is weakened when MgATP is also bound to the enzyme: the dissociation constant of 3-phosphoglycerate in this ternary complex (0.25 +/- 0.08 mM) is comparable to its Km value (0.38 +/- 0.10 mM). The same weakening can be observed in the non-productive ternary complexes where MgATP is replaced by MgADP (Kd = 0.20 +/- 0.10 mM) or AMP (Kd = 0.12 +/- 0.05 mM), whereas adenosine has no such effect. This indicates the importance of the negatively charged phosphate(s) of nucleotides in influencing the binding of 3-phosphoglycerate. In contrast to 3-phosphoglycerate, the binding of the substrate analogue, glycerol 3-phosphate is practically not affected by the presence of MgATP: the dissociation constant to the free enzyme (0.40 +/- 0.10 mM) is comparable to its inhibitory constant (0.70 +/- 0.20 mM). This finding and the similarity of the dissociation constant of glycerol 3-phosphate binding (0.40 +/- 0.10 mM) and the Km value of 3-phosphoglycerate (0.38 +/- 0.10 mM) suggest that, during the enzymic reaction, binding of 3-phosphoglycerate occurs probably without involvement of the carboxyl group.  相似文献   

20.
1. A simple kinetic method was devised to show whether dissolved CO(2) or HCO(3)- ion is the substrate in enzyme-catalysed carboxylation reactions. 2. The time-course of the reductive carboxylation of 2-oxoglutarate by NADPH, catalysed by isocitrate dehydrogenase, was studied by a sensitive fluorimetric method at pH7.3 and pH6.4, with large concentrations of substrate and coenzyme and small carbon dioxide concentrations. 3. Reaction was initiated by the addition of carbon dioxide in one of three forms: (i) as the dissolved gas in equilibrium with bicarbonate; (ii) as unbuffered bicarbonate solution; (iii) as the gas or as an unbuffered solution of the gas in water. Different progress curves were obtained in the three cases. 4. The results show that dissolved CO(2) is the primary substrate of the enzyme, and that HCO(3)- ion is at best a very poor substrate. The progress curves are in quantitative agreement with this conclusion and with the known rates of the reversible hydration of CO(2) under the conditions of the experiments. The effects of carbonic anhydrase confirm the conclusions. 5. Similar experiments on the reductive carboxylation of pyruvate catalysed by the ;malic' enzyme show that dissolved CO(2) is the primary substrate of this enzyme also. 6. The results are discussed in relation to the mechanisms of these enzymes, and the effects of pH on the reactions. 7. The advantages of the method and its possible applications to other enzymes involved in carbon dioxide metabolism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号