首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The peptide alpha-melanocyte-stimulating hormone (alpha-MSH) occurs within the pituitary, brain, skin, ovary and other tissues, and has potent anti-inflammatory activity. For this reason, we examined its effects on an autoimmune disease: the experimental autoimmune-oophoritis (EAO). We analyzed the effect of the peptide on the release of nitric oxide (NO) and progesterone from cultured ovarian granulosa (GL) cells at 0, 7, 14, 21 and 28 days after sensitization of the rats. On day 0 the progesterone levels were higher in estrous rats than those in proestrus and diestrus. The NO amount did not differ among the diverse days of the cycles. The administration of alpha-MSH induced a decrease of NO in estrus and diestrus, but did not affect progesterone release. The EAO rats showed a period of constant diestrus ranging from about 7 to 14 days after immunization. At the onset (day 7) and the end of this period (day 14), the NO significantly increased in estrous rats which was correlated with a reduction in progesterone concentration. This effect was reverted by alpha-MSH. At 21 and 28 days, progesterone release increased only when the rats were in proestrus, while NO production was similar to that on day 0. Administration of alpha-MSH reduced progesterone release when the rats were in proestrus and these results were correlated with an increase in NO only at day 14. The results obtained suggest that alpha-MSH could act as a modulator of EAO, specially when the rats are in estrus.  相似文献   

2.
The effects of thymulin and GnRH on FSH and LH release were studied in suspension cultures of anterior pituitary cells from female adult rats sacrificed on each day of the estrous cycle. The spontaneous release of gonadotropins by pituitaries, as well as their response to GnRH or thymulin addition, fluctuated during the estrous cycle. Adding thymulin to pituitary cells from rats in diestrus 1 increased the concentration of FSH; while in cells from rats in estrus, FSH level decreased. Thymulin had a stimulatory effect on the basal concentration of LH during most days of the estrous cycle. Adding GnRH increased FSH release in cells from rats in diestrus 1, diestrus 2, or proestrus, and resulted in higher LH levels in cells obtained from rats in all days of the estrous cycle. Compared to the GnRH treatment, the simultaneous addition of thymulin and GnRH to cells from rats in diestrus 1, diestrus 2, or proestrus resulted in lower FSH concentrations. Similar results were observed in the LH release by cells from rats in diestrus 1, while in cells from rats in proestrus or estrus, LH concentrations increased. A directly proportional relation between progesterone serum levels and the effects of thymulin on FSH release was observed. These data suggest that thymulin plays a dual role in the release of gonadotropins, and that its effects depend on the hormonal status of the donor's pituitary.  相似文献   

3.
Progesterone secretion remained significantly higher during diestrus in the 5-day cyclic rat than in the 4-day cyclic animal. Injection of a sufficient amount of antiprogesterone serum (APS) at 2300 h on metestrus in a 5-day cycle advances ovulation and completion of the cycle by 1 day in the majority of animals (75 and 80%, respectively). Progesterone (250 micrograms) administered with APS eliminated the effect of the antiserum. Within 2 h after administration of APS, levels of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) elevated significantly, while a significant elevation of plasma estradiol above the control value followed as late as 36 h after the treatment. None of the 5-day cyclic rats treated with APS showed ovulatory increases of FSH and LH at 1700 h on the second day of diestrus, although 3 of the 4 animals receiving the same treatment ovulated by 1100 h on the following day. The onset of ovulatory release of gonadotropins might have been delayed for several hours in these animals. These results indicate that recurrence of the 5-day cycle is due to an elevated progesterone secretion on the morning of diestrus, and suggest that a prolongation of luteal progesterone secretion in an estrous cycle suppresses gonadotropin secretion. Rather than directly blocking the estrogen triggering of ovulatory LH surge, the prolonged secretion of luteal progesterone may delay the estrogen secretion itself, which decreases the threshold of the neural and/or hypophyseal structures for ovulatory LH release.  相似文献   

4.
Several studies have shown that hyperprolactinemia in rats inhibits the post-gonadectomy rise in plasma luteinizing hormone (LH) for a limited period only. In intact rats the suppression of plasma LH during hyperprolactinemia is more prolonged. In the present study we have examined the possibility that the elevated levels of progesterone brought about by the raised plasma prolactin levels in intact rats are involved in the maintenance of LH inhibition. We have observed the effect of exogenous progesterone administration during the early post-ovariectomy period on plasma LH levels in female rats made hyperprolactinemic by administration of the dopamine antagonist, domperidone. Following ovariectomy of virgin, female rats, plasma LH was determined on each day from Day 3 to Day 10 after ovariectomy. In control rats plasma LH had increased by approximately 5-fold during the period of the experiment. In control rats treated with progesterone the rise in plasma LH was inhibited temporarily but LH had increased to similar levels to the controls by Day 10. In hyperprolactinemic rats LH was suppressed until Day 7, after which significant rises were observed. However, in hyperprolactinemic rats treated with progesterone, LH did not rise in a similar fashion, and remained low throughout the experiment. We conclude that a combination of hyperprolactinemia and raised plasma progesterone concentrations is necessary for the continued inhibition of LH release after ovariectomy.  相似文献   

5.
Since administration of the antiprogesterone RU486 to cyclic female rats at metestrus and diestrus results in increased serum levels of LH, estradiol, and testosterone at proestrus, we investigated whether RU486 affects follicular steroidogenesis. Female rats with a 4-day estrous cycle, induced experimentally by a single injection of bromocriptine on the morning of estrus, were given RU486 (2 mg) twice daily (0900 and 1700 h) on metestrus and diestrus. At proestrus the preovulatory follicles were isolated and incubated for 4 h in the absence and presence of LH. In the absence of LH, accumulation of estradiol, testosterone, and progesterone in the medium was not different for RU486-treated rats and oil-treated controls. In contrast, LH-stimulated estradiol, testosterone, and progesterone secretions were significantly lower in RU486-treated rats compared with controls. Addition of pregnenolone to the incubation medium resulted in a significantly lower increase of progesterone in follicles from RU486-treated rats compared with those from oil-treated controls. This suggests that 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity is decreased by administration of RU486 in vivo. Aromatase and 17 alpha-hydroxylase/C17-20 lyase activities were not affected: addition of substrate (androstenedione and progesterone respectively) did not affect differently the amount of product formed (estradiol and testosterone) in RU486- and oil-treated rats. However, LH-stimulated pregnenolone secretion was lower in follicles from RU486-treated rats compared with follicles from oil-treated controls, suggesting that either cholesterol side-chain cleavage activity or LH responsiveness is decreased. At proestrus the preovulatory follicles from RU486- and oil-treated rats were not morphologically different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A decrease in serum progesterone at the end of pregnancy is essential for the induction of parturition in rats. We have previously demonstrated that LH participates in this process through: 1) inhibiting 3beta-hydroxysteroid dehydrogenase (3beta-HSD) activity and 2) stimulating progesterone catabolism by inducing 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) activity. The objective of this investigation was to determine the effect of LH and progesterone on the luteal expression of the steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (P450(scc)), 3beta-HSD, and 20alpha-HSD genes. Gene expression was analyzed by Northern blot analysis 24 and 48 h after administration of LH or vehicle on Day 19 of pregnancy. StAR and 3beta-HSD mRNA levels were lower in LH-treated rats than in rats administered with vehicle at both time points studied. P450(scc) mRNA levels were unaffected by LH. The 20alpha-HSD mRNA levels were not different between LH and control rats 24 h after treatment; however, greater expression of 20alpha-HSD, with respect to controls, was observed in LH-treated rats 48 h after treatment. Luteal progesterone content dropped in LH-treated rats at both time points studied, whereas serum progesterone decreased after 48 h only. In a second set of experiments, the anti-progesterone RU486 was injected intrabursally on Day 20 of pregnancy. RU486 had no effect on 3beta-HSD or P450(scc) expression but increased 20alpha-HSD mRNA levels after 8 h treatment. In conclusion, the luteolytic effect of LH is mediated by a drop in StAR and 3beta-HSD expression without effect on P450(scc) expression. We also provide the first in vivo evidence indicating that a decrease in luteal progesterone content may be an essential step toward the induction of 20alpha-HSD expression at the end of pregnancy in rats.  相似文献   

7.
Circulating levels and tissue content of alpha-MSH were measured on the morning of various days of the estrous cycle, and on the afternoon of proestrus in freely moving conscious rats. No surges of alpha-MSH were detected by RIA in the morning of various days of the cycle. The neurointermediate lobe content of alpha-MSH was slightly elevated on diestrus 1 as compared to the levels on diestrus 11 and proestrus but not to estrous levels. No changes in alpha-MSH content were detected in the anterior pituitary, the median eminence, mediobasal hypothalamus and the preoptic area at various stages of the estrous cycle. Plasma alpha-MSH levels were slightly elevated at 1500 hr of proestrus which was followed three hours later by a decline. This profile of plasma alpha-MSH on the afternoon of proestrus was reproduced by the SC administration of estradiol benzoate to long-term ovariectomized rats. These data suggest that, contrary to the results obtained by bioassay of alpha-MSH no surges of alpha-MSH occur on any day of the cycle, although a slight elevation on the afternoon of proestrus was detected. The altered pattern of release of this peptide on the afternoon of proestrus may be induced by estrogen.  相似文献   

8.
The effect of an induced hyperadrenal state on luteinizing hormone (LH) secretion and subsequent ovarian function was examined in both intact and adrenalectomized (ADRX) heifers. Treatments were begun on Day 2 or Day 16 of an estrous cycle in order to examine their effect on corpus luteum development or ovulation, respectively. In Experiment I, continuous intravenous infusion of ACTH (1.0 mg/24 h) to intact heifers decreased LH concentrations during the early phase of the cycle (Days 3-5). Treatment of ADRX heifers with hydrocortisone succinate (HS) (100 mg/24 h) did not appear to change mean LH concentrations, although da Rosa and Wagner (1981) have reported reduced plasma concentrations of progesterone at mid-cycle in these ACTH-treated intact heifers and HS-treated ADRX heifers. ACTH treatment of ADRX heifers had no effect on LH or progesterone. In the second study, there were similar frequencies of LH surges at the anticipated time of ovulation in all treatment groups. HS (100 mg/24 h) in ADRX heifers and ACTH (0.5 mg/24 h) in intact heifers was given continuously beginning on Day 16 of an estrous cycle. Although some animals in all groups exhibited LH surges, the ACTH-treated intact and HS-treated ADRX heifers failed to show a consistent subsequent increase in progesterone concentrations in plasma, suggesting a failure of luteal development. Although no difference was seen in baseline concentrations of LH, there was a greater difference between basal and overall mean LH concentrations in control groups than was observed in ACTH- or HS-treated animals. These induced hyperadrenal states resulted in depression of ovarian function as shown by decreased plasma progesterone during the luteal phase of the cycle. It is not known if other noncorticoid steroids from the adrenal cortex are necessary for a full expression of this effect.  相似文献   

9.
Between Days 6-11 of pregnancy or pseudopregnancy, the decidual tissue of the rat produces a prolactin-like hormone, decidual luteotropin, which can sustain luteal progesterone production when prolactin is suppressed. However, this effect is dependent upon the presence of the pituitary. The present investigation was undertaken to determine whether decidual luteotropin and luteinizing hormone (LH) act together to sustain luteal steroidogenesis and if so, to find out whether the need for LH is due to the inability of the decidual tissue to produce LH-like material and/or whether LH affects decidual luteotropin production. Pseudopregnant rats with or without decidual tissue were hypophysectomized on Day 8 and treated with either 1.5 IU human chorionic gonadotropin (hCG)/day or with vehicle. Within 24 h, serum progesterone dropped in both vehicle-treated groups and decidual luteotropin levels declined by 80% in the decidual tissue. Human CG administration had no effect on progesterone production in the control group. Yet in rats with decidual tissue, hCG stimulated progesterone production for at least 48 h and maintained the decidual tissue content of decidual luteotropin. Progesterone, but not hCG treatment, maintained decidual luteotropin concentrations in ovariectomized rats. To compare the luteotropic activity of the decidual tissue with that of the placenta, pregnant or pseudopregnant rats with decidual tissue were hypophysectomized on Day 8 and treated with 1.5 IU hCG. Control groups had decidual tissue or placentas removed and were similarly treated. Human CG stimulated progesterone production only in rats with placental or decidual tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In this paper we present evidence that a single low dose of the natural synthetic gonadotropin-releasing hormone (GnRH), inhibits ovulation induced by LH in proestrous-hypophysectomized rats. Rats hypophysectomized by the parapharyngeal route in the morning of proestrus received an intravenous injection of 100 or 300 ng GnRH at 1400 h immediately followed by 1.0 microgram LH per 100 g bw. In control groups, either one or both hormones were replaced with 0.9% NaCl. Ovulation was assessed the following morning by counting the ova present in oviductal flushings. All the rats treated with LH alone ovulated, and the addition of GnRH reduced significantly the number of ovulating rats and the number of ova per ovulating rat. In other groups of rats hypophysectomized in the morning of proestrus and treated in the same way, ovarian or adrenal secretory rates of estradiol and/or progesterone were measured after cannulation of the corresponding vein, in the afternoon of proestrus. In these animals, GnRH failed to inhibit either the ovarian progesterone surge observed 2 h after LH administration, or the adrenal progesterone secretion. All hypophysectomized rats showed lower ovarian secretory rate of estradiol than intact rats; this rate was not affected by treatment with LH or LH plus GnRH. The systemic estradiol levels in plasma of hypophysectomized rats were distributed within a range of 20 pg/ml to 50 pg/ml. The number of rats whose levels were above 21 pg/ml on estrus day was significantly higher in rats receiving 300 ng GnRH as compared to those receiving 100 ng GnRH, reaching values that surpassed the concentration found in intact, untreated animals at the same time of estrus. This effect did not depend on LH administration.  相似文献   

11.
alpha-MSH and beta-endorphin, both synthesized from a common precursor, have opposite behavioral actions. In order to determine if these peptides have opposite effects on pituitary function, basal LH secretion and basal and stress-induced prolactin release were studied in adult male rats after intraventricular injection of alpha-MSH. Each rat also received intraventricular saline in order to serve as its own control. 18 micrograms alpha-MSH stimulated plasma LH from 16.5 +/- 2.5 (SEM) ng/ml to a peak of 27.2 +/- 4.0 and 26.0 +/- 4.9 ng/ml at 5 and 10 min, and suppressed prolactin from 3.5 +/- 0.7 ng/ml to 1.3 +/- 0.1 and 1.2 +/- 0.1 ng/ml at 15 and 30 min. Intraventricular alpha-MSH also significantly blunted the prolactin rise associated with the stress of swimming. 10 and 20 min after the onset of swimming, prolactin levels in rats pretreated with alpha-MSH were significantly diminished: 7.4 +/- 1.5 and 6.5 +/- 2.0 ng/ml vs 23.8 +/- 3.6 and 15.2 +/- 2.8 after normal saline. Similarly, des-acetyl alpha-MSH which is the predominant form of alpha-MSH in the hypothalamus, diminished the stress-induced prolactin rise from 18.4 +/- 5.3 and 11.2 +/- 3.4 ng/ml at 10 and 20 min to 10.0 +/- 2.4 and 5.5 +/- 1.6 ng/ml. We conclude that centrally administered alpha-MSH stimulates LH and suppresses basal and stress-induced prolactin release in male rats. These actions are opposite to those previously shown for beta-endorphin and suggest that alpha-MSH may antagonize the effects of beta-endorphin on pituitary function.  相似文献   

12.
Radioimmunoassay presented a method of measuring plasma levels of FSH,LH and prolactin in pseudopregnant rats. Plasma prolactin levels doubled 15 minutes following cervical probing (p .01) on the day of estrus. Plasma LH levels were not significantly elevated. Due to the use of ether anesthesia at blood collecting 3 hr before and 15 minutes after stimulation, only 1 of 16 rats developed pseudopregnancy. On Day 4 of pseudopregnancy in rats mated with vasectomized males; plasma LH was lower (p .05) than in normal rats on the first day of diestrus, perhaps due to the suppressive action of ovarian progesterone and some estrogen. FSH was higher than in normal rats (p .05) perhaps due to the lesser sensitivity of FSH to the inhibitory effect of progesterone. Large decidoumata developed by Day 9 in uterine horns traumatized on Day 4 (153 plus or minus 8 mg uterus weight compared to 1510 plus or minus 204 mg). Thus, the corpora remain functional after LH and prolactin are at normal and subnormal levels. On Day 9 plasma prolactin was lower than at Day 1 of diestrus (p .001). Plasma FSH was elevated (p .01). Plasma LH was unchanged. The degree of rise of LH levels 5 days following ovariectomy on Day 4 of psuedopregnancy or on the first day of diestrus was greater in the former group (p .02), perhaps due to rebound of LH from suppression by ovarian steroids. FSH rose equally in both groups. Prolactin remain about the same. Increased prolactin release by the adenohypophysis was briefer than expected.  相似文献   

13.
The concentration of unoccupied luteal receptors for luteinizing hormone (LH) and prolactin, and the concentration of these two hormones in the pituitary was determined in 11 groups of bitches (n = 3 or 4/group) representing stages from proestrus through Day 80 of diestrus. Despite dramatic changes in serum concentrations of progesterone, the concentration of luteal receptors for LH and prolactin was quite constant throughout the entire luteal phase. In association with the ovulatory surge of LH, pituitary concentration of LH decreased abruptly from proestrus to Day 2 of diestrus, and was then gradually replenished during the remainder of diestrus. The concentration of prolactin in the pituitary did not vary significantly from proestrus through late diestrus.  相似文献   

14.
Ovarian and adrenal membranes from immature gonadotropin-primed rats, treated with 4-amino-pyrazolopyrimidine (4APP) to reduce endogenous lipoprotein levels, displayed higher binding of porcine high-density lipoprotein (HDL) when compared to control rats. Immature, hypophysectomized (HYPOX) rats bearing corpora lutea (CL) on Day 5 after ovulation had lower levels of serum progesterone and reduced capacity for HDL and human chorionic gonadotropin (hCG) binding to ovarian membranes when compared with intact animals. Hypophysectomy also reduced the number of HDL binding sites in adrenal membranes. Treatment of HYPOX animals with luteinizing hormone (LH) and prolactin (Prl) alone or in combination increased the HDL binding sites in the ovary relative to HYPOX-untreated rats. Neither hormone affected binding to adrenals, where only adrenocorticotropic hormone (ACTH) enhanced HDL binding. LH treatment reduced the serum progesterone levels and hCG binding to the ovaries, whereas Prl administration increased progesterone levels with no effect on hCG binding. We conclude from this study that HDL binding in the luteinized ovary is regulated by Prl and LH and circulating lipoproteins, whereas in adrenals it is regulated by ACTH and circulating levels of lipoproteins.  相似文献   

15.
In previous studies female rats were shown to increase mating after retrochiasmatic surgical transections prior to ovariectomy and after ovariectomy with and without hormone replacement. This study was designed to determine if retrochiasmatic surgical transections (FC) or sham-FC would produce similar increased mating in androgenized rats. Four of thirty-one (13%) testosterone propionate (TP)-treated rats showed minimal mating without surgery, and 27 (87%) failed to mate. Mating occurred up to 30 days following FC, whereas temporary mating resulting from sham-FC had declined to presurgical levels by 30 days after surgery. Mating after ovariectomy was not facilitated by daily injections of 0.2μg of estradiol cypionate, but was facilitated after daily injections of 1.6 μg. TP-treated rats with FC showed more mating after 1.6 μg estradiol cypionate injections than the sham-FC and non-TP-treated controls. Serum estradiol-17β and progesterone levels at autopsy did not differ between TP-treated rats mating without surgery and those failing to mate. TP-treated rats with sham-FC surgery showed levels of estradiol-17β and progesterone similar to those of nonsurgical TP-treated rats and were combined into a single control group for comparison to the FC group. Serum levels of estradiol-17β did not differ between the control and FC group, whereas serum progesterone levels were decreased in the FC group. Serum levels of estradiol-17β and progesterone in TP-treated rats without FC were similar to baseline levels observed in this colony during the 4-day estrous cycle, but were less than peak levels observed at similar times on proestrus and diestrus Day 2, respectively. One possible effect of early androgen treatment would be to initiate a sustained inhibitory input to the mediobasal hypothalamus from the septal-preoptic area regions, thus causing deficits in mating. The lordosis responding in the androgenized rat after surgical interruption of the preoptic area-anterior hypothalamic continuum suggests that an inhibitory input was disrupted. It was further suggested that the higher mating observed in the FC group compared to the sham-FC group was not the result of higher ovarian hormone levels.  相似文献   

16.
Chronic exposure of young ovariectomized rats to elevated circulating estradiol causes loss of steroid-induced LH surges. Such LH surges are associated with cFos-induced activation of GnRH neurons; therefore, we hypothesized that chronic estradiol treatment abolishes LH surges by decreasing activation of GnRH neurons. Regularly cycling rats were ovariectomized and immediately received an estradiol implant or remained untreated. Three days or 2 or 4 wk later, the estradiol-treated rats received vehicle or progesterone at 1200 h, and 7 hourly blood samples were collected for RIA of LH. Thereafter, all rats were perfused, and the brains were examined for immunocytochemical localization of cFos and GnRH. The GnRH neurons from untreated ovariectomized rats rarely expressed cFos. As reported, LH surges induced by 3 days of estradiol treatment were associated with a 30% increase in cFos-containing GnRH neurons, and progesterone enhanced both the amplitude of LH surges and the proportion of cFos-immunopositive GnRH neurons. As hypothesized, the abolition of LH surges caused by 2 or more weeks of estradiol was paralleled by a reduction in the percentage of cFos-containing GnRH neurons, and this effect was delayed by progesterone. These results suggest that chronic estradiol abolishes steroid-induced LH surges in part by inactivating GnRH neurons.  相似文献   

17.
Summary 1. Intact or ovariectomized (OVX) cyclic rats injected or not with RU486 (4 mg/0.2 ml oil) from proestrus onwards were bled at 0800 and 1800h on proestrus, estrus and metestrus. Additional RU486-treated rats were injected with: LHRH antagonist (LHRHa), estradiol benzoate (EB) or bovine follicular fluid (bFF) and sacrified at 1800 h in estrous afternoon. LH and FSH serum levels were determined by RIA.2. RU486-treated intact or OVX rats had decreased preovulatory surges of LH and FSH, abolished secondary secretion of FSH and hypersecretion of FSH in estrous afternoon. The latter was decreased by LHRHa and abolished by EB or bFF. In contrast, EB induced an hypersecretion of LH in RU486-treated rats at 1800h in estrus.3. It can be concluded that in the absence of the proestrous progesterone actions, the absence of the inhibitory effect of the ovary in estrus evoked a LHRH independent secretion of FSH.  相似文献   

18.
The effect of 5-hydroxytryptophan (5-HTP) on serum progesterone and the possible role of adrenal progesterone in mediating stimulation by 5-HTP of phasic release of luteinizing. hormone (LH) were investigated in estradiol benzoate (EB)-treated ovariectomized rats. LH surges were induced in long-term (at least two weeks) ovariectomized rats by two injections of EB (20 micrograms/rat, s.c.) with an interval of 72 hrs. Administration of 5-HTP (50 mg/kg, i.p.) at 1000 hr in EB-treated ovariectomized rats resulted in a four-fold increase in serum progesterone within 30 mins, and significantly stimulated the LH surge at 1600 hr. This facilitative effect of 5-HTP on serum LH, but not progesterone, was further potentiated in rats pretreated with P-chlorophenylalanine (PCPA) 72 hrs earlier. Adrenalectomy shortly before 5-HTP administration attenuated the LH surge in saline treated controls, and completely blocked the facilitative effect of 5-HTP on the afternoon surge of LH in rats pretreated with PCPA 72 hrs earlier. On the other hand, chronic adrenalectomy (for 6 days) followed by hydrocortisone (0.2 mg/rat/day) replacement not only had no effect on the LH surge in saline treated controls, but also failed to prevent 5-HTP from facilitating the LH surge in PCPA pretreated rats. On the first day of bleeding, the basal LH value at 1000 hr in sham operated controls was significantly suppressed by PCPA pretreatment 48 hrs earlier. The second dose of 5-HTP administered on the next day failed to potentiate LH surges in either sham operated or adrenalectomized rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The goal of the present study was to determine whether ACTH and progesterone have any effect on LH secretion and pulse frequency in recently castrated rams. Six 2-year-old Corriedale rams were castrated in the winter. The day before castration, blood samples were taken in order to establish the precastration LH levels. The rams were divided into an untreated group (group U: n = 2) and a treated group (group T: n = 4). The first treatment consisted of the i.v. administration of 0.5 mg of ACTH on day 20 post-castration, immediately after the first sample had been taken. During the second treatment, subcutaneous progesterone implants were given to group T for 5 days. Control samplings were performed one week before each treatment. Prior to castration, the testosterone levels were low, while after castration they were below the detection limit of the assay. Cortisol and progesterone concentrations were basal before castration in all of the animals and after castration in group U and also in the control samplings for group T. ACTH treatment caused a significant increase in both cortisol and progesterone levels for 3 h (P < 0.001). Progesterone implants raised progesterone levels in group T, but cortisol levels remained basal. Before castration, all animals had low LH levels and hardly any pulse activity was seen. After castration, both the number of LH pulses and the mean LH production increased significantly in all of the animals (P < 0.01). During the ACTH trial, LH pulse frequency was significantly reduced for the first 4 h following ACTH administration (P = 0.013), however, no such differences occurred in the prior control period. No effect was seen on mean LH concentration during the ACTH treatment. Progesterone treatment did not have any effect on either the number of LH pulses nor on LH concentrations (P > 0.05).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号