首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A closed system consisting of an assimilation chamber furnished with a membrane inlet from the liquid phase connected to a mass spectrometer was used to measure O2 evolution and uptake by Chlamydomonas reinhardtii cells grown in ambient (0.034% CO2) or CO2-enriched (5% CO2) air. At pH = 6.9, 28°C and concentrations of dissolved inorganic carbon (DIC) saturating for photosynthesis, O2 uptake in the light (Uo) equaled O2 production (Eo) at the light compensation point (15 micromoles photons per square meter per second). Eo and Uo increased with increasing photon fluence rate (PFR) but were not rate saturated at 600 micromoles photons per square meter per second, while net O2 exchange reached a saturation level near 500 micromoles photons per square meter per second which was nearly the same for both, CO2-grown and air-grown cells. Comparison of the Uo/Eo ratios between air-grown and CO2-grown C. reinhardtii showed higher values for air-grown cells at light intensities higher than light compensation. For both, air-grown and CO2-grown algae the rates of mitochondrial O2 uptake in the dark measured immediately before and 5 minutes after illumination were much lower than Uo at PFR saturating for net photosynthesis. We conclude that noncyclic electron flow from water to NADP+ and pseudocyclic electron flow via photosystem I to O2 both significantly contribute to O2 exchange in the light. In contrast, mitochondrial respiration and photosynthetic carbon oxidation cycle are regarded as minor O2 consuming reactions in the light in both, air-grown and CO2-grown cells. It is suggested that the “extra” O2 uptake by air-grown algae provides ATP required for the energy dependent CO2/HCO3 concentrating mechanism known to be present in these cells.  相似文献   

2.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

3.
Active CO(2) Transport by the Green Alga Chlamydomonas reinhardtii   总被引:6,自引:6,他引:0       下载免费PDF全文
Mass spectrometric measurements of dissolved free 13CO2 were used to monitor CO2 uptake by air grown (low CO2) cells and protoplasts from the green alga Chlamydomonas reinhardtii. In the presence of 50 micromolar dissolved inorganic carbon and light, protoplasts which had been washed free of external carbonic anhydrase reduced the 13CO2 concentration in the medium to close to zero. Similar results were obtained with low CO2 cells treated with 50 micromolar acetazolamide. Addition of carbonic anhydrase to protoplasts after the period of rapid CO2 uptake revealed that the removal of CO2 from the medium in the light was due to selective and active CO2 transport rather than uptake of total dissolved inorganic carbon. In the light, low CO2 cells and protoplasts incubated with carbonic anhydrase took up CO2 at an apparently low rate which reflected the uptake of total dissolved inorganic carbon. No net CO2 uptake occurred in the dark. Measurement of chlorophyll a fluorescence yield with low CO2 cells and washed protoplasts showed that variable fluorescence was mainly influenced by energy quenching which was reciprocally related to photosynthetic activity with its highest value at the CO2 compensation point. During the linear uptake of CO2, low CO2 cells and protoplasts incubated with carbonic anhydrase showed similar rates of net O2 evolution (102 and 108 micromoles per milligram of chlorophyll per hour, respectively). The rate of net O2 evolution (83 micromoles per milligram of chlorophyll per hour) with washed protoplasts was 20 to 30% lower during the period of rapid CO2 uptake and decreased to a still lower value of 46 micromoles per milligram of chlorophyll per hour when most of the free CO2 had been removed from the medium. The addition of carbonic anhydrase at this point resulted in more than a doubling of the rate of O2 evolution. These results show low CO2 cells of Chlamydomonas are able to transport both CO2 and HCO3 but CO2 is preferentially removed from the medium. The external carbonic anhydrase is important in the supply to the cells of free CO2 from the dehydration of HCO3.  相似文献   

4.
Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 “reduced” and the A1FI “business-as-usual” CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under “reduced” CO2 emission, but not “business-as-usual” scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under “reduced” emission scenarios.  相似文献   

5.
The succulent leaf of the obligate Crassulacean acid metabolism plant Crassula falcata comprises two distinct types of parenchyma. The peripheral tissue is dark green, whereas the central tissue is relatively colorless. We have investigated whether the conventional interpretation of Crassulacean acid metabolism—simply, temporal separation of light and dark CO2 fixation within individual cells—is sufficient. Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) and chlorophyll, indicating the photosynthetic-carbon-reduction pathway, were concentrated in peripheral tissue. Specific activities of P-enolpyruvate carboxylase (4.1.1.31) and of NAD+-malic enzyme (1.1.1.39), indicating capacity for dark CO2 fixation and release, respectively, were high in both types of parenchyma. Measured directly as malic acid decline at the beginning of the photoperiod, CO2 “storage” occurred in both tissues. These data indicate that there is a spatial component to Crassulacean acid metabolism in C. falcata.  相似文献   

6.
Glycolate and ammonia excretion plus oxygen exchanges were measured in the light in l-methionine-dl-sulfoximine treated air-grown Chlamydomonas reinhardii. At saturating CO2 (between 600 and 700 microliters per liter CO2) neither glycolate nor ammonia were excreted, whereas at the CO2 compensation concentration (<10 microliters per liter CO2) treated algae excreted both glycolate and ammonia at rates of 37 and 59 nanomoles per minute per milligram chlorophyll, respectively. From the excretion values we calculate the amount of O2 consumed through the glycolate pathway. The calculated value was not significantly different from the component of O2 uptake sensitive to CO2 obtained from the difference between O2 uptake of the CO2 compensation point and at saturating CO2. This component was about 40% of stationary O2 uptake measured at the CO2 compensation point. From these data we conclude that glyoxylate decarboxylation in air-grown Chlamydomonas represents a minor pathway of metabolism even in conditions where amino donors are deficient and that processes other than glycolate pathway are responsible for the O2 uptake insensitive to CO2.  相似文献   

7.
With an experimental system using mass spectrometry techniques and infra-red gas analysis of CO2 developed for aquatic plants, we studied the responses to various light intensities and CO2 concentrations of photosynthesis and O2 uptake of the red macroalga Chondrus crispus S. The CO2 exchange resistance at air-water interface which could limit the photosynthesis was experimentally measured. It allowed the calculation of the free dissolved CO2 concentration. The response to light showed a small O2 uptake (37% of net photosynthesis in standard conditions) compared to C3 plants; it was always higher than dark respiration and probably included a photoindependent part. The response to CO2 showed: (a) an O2 uptake relatively insensitive to CO2 concentration and not completely inhibited with high CO2, (b) a general inhibition of gas exchanges below 130 microliters CO2 per liter (gas phase), (c) an absence of an inverse relationship between O2 and CO2 uptakes, and (d) a low apparent Km of photosynthesis for free CO2 (1 micromolar). These results suggest that O2 uptake in the light is the sum of different oxidation processes such as the glycolate pathway, the Mehler reaction, and mitochondrial respiration. The high affinity for CO2 is discussed in relation to the use of HCO3 and/or the internal CO2 accumulation.  相似文献   

8.
Single attached leaves of sunflower (Helianthus annus L. “Mennonite”) were supplied 14CO2 of constant specific radioactivity in gas mixtures containing various CO2 and O2 concentrations. The 14CO2 and CO2 fluxes were measured concurrently in an open system using an ionization chamber and infrared gas analyzer.  相似文献   

9.
Photosynthetic Units   总被引:8,自引:0,他引:8       下载免费PDF全文
Leaf tissues of aurea mutants of tobacco and Lespedeza have been shown to have higher photosynthetic capacity per molecule of chlorophyll, a higher saturation intensity, a simpler lamellar structure, and the same quantum yield as their dark green parents. Here we report on the values of photosynthetic units for both types of plants and some algae. The unit has been assumed to be about as uniform and steady in the plant world as the quantum efficiency. The number on which all theoretical discussions have been based so far is 2400 per O2 evolved or CO2 reduced. With dark green plants and algae our determinations of units by means of 40 µsec flashes superimposed on a steady rate of background photosynthesis at 900 ergs cm-2 sec-1 of red light yielded mostly numbers between 2000 and 2700. However, the photosynthetic unit turned out to be very variable, even in these objects. In aurea mutants the unit was distinctly smaller, averaging 600 chl/CO2. By choosing the right combination of colors for flash and background light, units as low as 300 chl/CO2 or 40 chl/e- could be measured consistently. We found five well-defined groups of units composed of multiples of its smallest member. These new findings are discussed in terms of structural entities that double or divide under the influence of far-red light.  相似文献   

10.
The establishment and maintenance of high rates of photosynthetic CO2 incorporation in mesophyll cells of Papaver somniferum (opium poppy) depend on a regime of dark and light periods immediately following isolation, as well as carefully adjusted conditions of isolation. Analysis of the incorporation pattern of 14CO2 by the isolated cells indicates an initial “stress-response” period of approximately 20 hours characterized by increased respiratory-type metabolism and diminished photosynthesis. Under the favorable regime, this period is followed by rapid recovery and the reinstatement of a metabolic state strikingly similar to that of intact leaves in which the initial rate of CO2 incorporation is between 110 and 175 μmoles CO2 fixed per mg chlorophyll per hour. The photosynthetic viability of these cells can be maintained for up to 80 hours.  相似文献   

11.
Scenedesmus cells grown on high CO2, when adapted to air levels of CO2 for 4 to 6 hours in the light, formed two concentrating processes for dissolved inorganic carbon: one for utilizing CO2 from medium of pH 5 to 8 and one for bicarbonate accumulation from medium of pH 7 to 11. Similar results were obtained with assays by photosynthetic O2 evolution or by accumulation of dissolved inorganic carbon inside the cells. The CO2 pump with K0.5 for O2 evolution of less than 5 micromolar CO2 was similar to that previously studied with other green algae such as Chlamydomonas and was accompanied by plasmalemma carbonic anhydrase formation. The HCO3 concentrating process between pH 8 to 10 lowered the K0.5 (DIC) from 7300 micromolar HCO3 in high CO2 grown Scenedesmus to 10 micromolar in air-adapted cells. The HCO3 pump was inhibited by vanadate (Ki of 150 micromolar), as if it involved an ATPase linked HCO3 transporter. The CO2 pump was formed on low CO2 by high-CO2 grown cells in growth medium within 4 to 6 hours in the light. The alkaline HCO3 pump was partially activated on low CO2 within 2 hours in the light or after 8 hours in the dark. Full activation of the HCO3 pump at pH 9 had requirements similar to the activation of the CO2 pump. Air-grown or air-adapted cells at pH 7.2 or 9 accumulated in one minute 1 to 2 millimolar inorganic carbon in the light or 0.44 millimolar in the dark from 150 micromolar in the media, whereas CO2-grown cells did not accumulate inorganic carbon. A general scheme for concentrating dissolved inorganic carbon by unicellular green algae utilizes a vanadate-sensitive transporter at the chloroplast envelope for the CO2 pump and in some algae an additional vanadate-sensitive plasmalemma HCO3 transporter for a HCO3 pump.  相似文献   

12.
Wong SC  Woo KC 《Plant physiology》1986,80(4):877-883
Rates of CO2 assimilation and steady state chlorophyll a fluorescence were measured simultaneously at different intercellular partial pressures of CO2 in attached cotton (Gossypium hirsutum L. cv Deltapine 16) leaves at 25°C. Electron transport activity for CO2 assimilation plus photorespiration was calculated for these experiments. Under light saturating (1750 microeinsteins per square meter per second) and light limiting (700 microeinsteins per square meter per second) conditions there was a good correlation between fluorescence and the calculated electron transport activity at 19 and 200 millibars O2, and between fluorescence and rates of CO2 assimilation at 19 millibars but not 200 millibars O2. The values of fluorescence measured at about 220 microbars intercellular CO2 were not greatly affected by increasing O2 from 19 to 800 millibars. Fluorescence increased with light intensity at any one intercellular CO2 partial pressure. But the values obtained for fluorescence, expressed as a ratio of the maximum fluorescence obtained in DCMU-treated tissue, over the same range of CO2 partial pressure at 500 microeinsteins per square meter per second were similar to those obtained at 1000 and 2000 microeinsteins per square meter per second. There were two phases in the observed correlation between fluorescence and calculated electron transport activity: an initial inverse relationship at low CO2 partial pressures which reversed to a positive correlation at higher values of CO2 partial pressures. Similar results were observed in the C3 species Helianthus annuus L., Phaseolus vulgaris L., and Brassica chinensis. In all C4 species (Zea mays L., Sorghum bicolor L., Panicum maximum Jacq., Amaranthus edulis Speg., and Echinochloa frumentacea [Roxb.] Link) examined changes in fluorescence were directly correlated with changes in CO2 assimilation rates. The nature and the extent to which Q (primary quencher) and high-energy state (qE) quenching function in determining the steady state fluorescence obtained during photosynthesis in leaves is discussed.  相似文献   

13.
Kruse T  Tallman G  Zeiger E 《Plant physiology》1989,91(4):1382-1386
A method for isolating guard cell protoplasts (GCP) from mechanically prepared epidermis of Vicia faba is described. Epidermis was prepared by homogenizing leaves in a Waring blender in a solution of 10% Ficoll, 5 millimolar CaCl2, and 0.1% polyvinylpyrrolidone 40 (PVP). Attached mesophyll and epidermal cells were removed by shaking epidermis in a solution of Cellulysin, mannitol, CaCl2, PVP, and pepstatin A. Cleaned epidermis was transferred to a solution of mannitol, CaCl2, PVP, pepstatin A, cellulase “Onozuka” RS, and pectolyase Y-23 for the isolation of GCP. Preparations made by this method included both adaxial and abaxial GCP and contained ≤0.017% mesophyll protoplasts, ≤0.6% mesophyll fragments, and no epidermal cell contaminants. Yields averaged 9 × 104 protoplasts/leaflet and 98 to 100% of the GCP excluded trypan blue, concentrated neutral red, and hydrolyzed fluorescein diacetate. Isolated GCP increased in diameter by 2.2 micrometers after incubation in darkness in 10 micromolar fusicoccin, 0.4 molar mannitol, 5 millimolar KCl, and 1 millimolar CaCl2. Illumination of GCP with 800 micromoles per square meter per second of red light resulted in alkalinization of their suspension medium. When 10 micromolar per square meter per second of blue light was superimposed onto the red light background, the medium acidified. Measurements of chlorophyll a fast fluorescence transients from isolated GCP indicated that GCP were capable of electron transport, and slow transients contained the “M” peak usually associated with a functional photosynthetic carbon reduction pathway.  相似文献   

14.
Two naturally occurring species of the genus Alternanthera, namely A. ficoides and A. tenella, were identified as C3-C4 intermediates based on leaf anatomy, photosynthetic CO2 compensation point (Γ), O2 response of г, light intensity response of г, and the activities of key enzymes of photosynthesis. A. ficoides and A. tenella exhibited a less distinct Kranz-like leaf anatomy with substantial accumulation of starch both in mesophyll and bundle sheath cells. Photosynthetic CO2 compensation points of these two intermediate species at 29°C were much lower than in C3 plants and ranged from 18 to 22 microliters per liter. Although A. ficoides and A. tenella exhibited similar intermediacy in г, the apparent photorespiratory component of O2 inhibition in A. ficoides is lower than in A. tenella. The г progressively decreases from 35 microliters per liter at lowest light intensity to 18 microliters per liter at highest light intensity in A. tenella. It was, however, constant in A. ficoides at 20 to 25 microliters per liter between light intensities measured. The rates of net photosynthesis at 21% O2 and 29°C by A. ficoides and A. tenella were 25 to 28 milligrams CO2 per square decimeter per hour which are intermediate between values obtained for Tridax procumbens and A. pungens, C3 and C4 species, respectively. The activities of key enzymes of C4 photosynthesis, phosphoenolpyruvate carboxylase, pyruvate Pi dikinase, NAD malic enzyme, NADP malic enzyme and phosphoenolpyruvate carboxykinase in the two intermediates, A. ficoides and A. tenella are very low or insignificant. Results indicated that the relatively low apparent photorespiratory component in these two species is presumably the basis for the C3-C4 intermediate photosynthesis.  相似文献   

15.
The nature of the inorganic carbon utilized during photosynthesis by Chlorella pyrenoidosa was investigated using three experimental techniques (open gas analysis system with “artificial leaf” or “aqueous” chambers and O2 electrode system) to measure carbon assimilation. Photosynthesis was studied as a function of pH and CO2 concentration. The CO2 concentration was inadequate to meet the requirements of photosynthesis only when HCO3 was added at high pH. Under all other conditions, the low and constant Km (CO2), in contrast to the highly variable Km (HCO3), suggested that CO2 was the major species utilized.  相似文献   

16.
The responses of minimal and maximal fluorescence yields of chlorophyll a to irradiance of actinic white light were determined by pulse modulated fluorimetry in leaf discs from tobacco, Nicotiana tabacum, at 1.6, 20.5, and 42.0% (v/v) O2. Steady-state maximal fluorescence yield (Fm′, measured during a saturating light pulse) declined with increasing irradiance at all O2 levels. In contrast, the steady-state minimal fluorescence yield (Fo′, measured during a brief dark interval) increased with irradiance relative to that recorded for the fully dark-adapted leaf (Fo) or that observed after 5 minutes of darkness (Fo*). The relative magnitude of this increase was somewhat greater and extended to higher irradiances at the elevated O2 levels compared with 1.6% O2. Suppression of Fo′ was only observed consistently at saturating irradiance. The results are interpreted in terms of the occurrence of photosystem II units possessing exceedingly slow turnover times (i.e. “inactive” units). Inactive units play an important role, along with thermal deactivation of excited chlorophyll, in determining the response of in vivo fluorescence yield to changes in irradiance. Also, a significant interactive effect of O2 concentration and the presence or absence of far red light on oxidation of photosystem II acceptors in the dark was noted.  相似文献   

17.
The photosynthetic performance of synchronously grown Chlamydomonas reinhardtii alternated rhythmically during the cell cycle. The activity of the “CO2 concentrating mechanism” including the ability to accumulate CO2 internally and the activity of carbonic anhydrase peaked after 6 to 9 hours of light and reached minimum after 6 to 9 hours of dark. Consequently, the apparent photosynthetic affinity to extracellular CO2 alternated rhythmically. At the end of the dark period the cells behaved as if they were adapted to high CO2 even though they were continuously aerated with air. Results from experiments in which the light or dark periods were extended bear on the interaction between the internal (cell cycle or biological clock) and the external (light) signal. The observed rhythmical alterations in photosynthetic Vmax may result from changes in PSII activity. The latter may be partly explained by the capacity for phosphorylation of thylakoid proteins, which reached maximum after 9 hours of light and decreased toward the dark period.  相似文献   

18.
Evidence for Light-Stimulated Fatty Acid Synthesis in Soybean Fruit   总被引:4,自引:3,他引:4       下载免费PDF全文
In leaves, the light reactions of photosynthesis support fatty acid synthesis but disagreement exists as to whether this occurs in green oilseeds. To address this question, simultaneous measurements of the rates of CO2 and O2 exchange (CER and OER, respectively) were made in soybean (Glycine max L.) fruits. The imbalance between CER and OER was used to estimate the diverted reductant utilization rate (DRUR) in the equation: DRUR = 4 × (OER + CER). This yielded a quantitative measure of the rate of synthesis of biomass that is more reduced per unit carbon than glucose (in photosynthesizing tissues) or than the substrates of metabolism (in respiring tissues). The DRUR increased by about 2.2-fold when fruits were illuminated due to a greater increase in OER than decrease in CER. This characteristic was shown to be a property of the seed (not the pod wall), to be present in fruits at all developmental stages, and to reach a maximal response at relatively low light. When seeds were provided with 13CO2, light reduced 12CO2 production but had little effect on 13CO2 fixation. When they were provided with 18O2, light stimulated 16O2 production but had no effect on 18O2 uptake. Together, these findings indicate that light stimulates fatty acid synthesis in photosynthetic oilseeds, probably by providing both ATP and carbon skeletons.  相似文献   

19.
Brown RH 《Plant physiology》1980,65(2):346-349
Reduced photorespiration has been reported in Panicum milioides on the basis of lower CO2 compensation concentrations than in C3 species, lower CO2 evolution in the light, and less response of apparent photosynthesis to O2 concentration. The lower response to O2 in P. milioides could be due to reduced O2 competition with CO2 for reaction with ribulose 1,5-bisphosphate, to a reduced loss of CO2, or to an initial fixation of CO2 by phosphoenolpyruvate carboxylase. Experiments were carried out with Panicum maximum Jacq., a C4 species having no apparent photorespiration; tall fescue (Festuca arundinacea Schreb.), a C3 species; P. milioides Nees ex Trin.; and Panicum schenckii Hack. The latter two species are closely related and have low photorespiration rates. CO2 exchange was measured at five CO2 concentrations ranging from 0 to 260 microliters per liter at both 2 and 21% O2. Mesophyll conductance or carboxylation efficiency was estimated by plotting substomatal CO2 concentrations against apparent photosynthesis. In the C4 species P. maximum, mesophyll conductance was 0.96 centimeters per second and was unaffected by O2 concentration. At 21% O2 mesophyll conductance of tall fescue was decreased 32% below the value at 2% O2. Decreases in mesophyll conductance at 21% O2 for P. milioides and P. schenckii were similar to that for tall fescue. On the other hand, loss of CO2 in CO2-free air, estimated by extrapolating the CO2 response curve to zero CO2, was increased from 1.8 to 6.5 milligrams per square decimeter per hour in tall fescue as O2 was raised from 2-21%. Loss of CO2 was less than 1 milligram per square decimeter per hour for P. milioides and P. schenckii and was unaffected by O2. The results suggest that the reduced O2 response in P. milioides and P. schenckii is due to a lower loss of CO2 in the light rather than less inhibition of carboxylation by O2, since the decrease in carboxylation efficiency at 21% O2 was similar for P. milioides, P. schenckii, and tall fescue. The inhibition of apparent photosynthesis by 21% O2 in these three species at low light intensities was similar at 31 to 36% which also indicates similar O2 effects on carboxylation. Apparent photosynthesis at high light intensity was inhibited less by 21% O2 in P. milioides (16.8%) and P. schenckii (23.8%) than in tall fescue (28.4%). This lower inhibition in the Panicum species may have been due to a higher degree of recycling of photorespired CO2 in these species than in tall fescue.  相似文献   

20.
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号