首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasmids related to RSF1010 from Bordetella bronchiseptica   总被引:6,自引:0,他引:6  
Six out of 14 Bordetella bronchiseptica isolates from U.K. pigs each contained one plasmid, of 8.7-44 kb. All plasmid-containing isolates were sulfonamide resistant, and this property was shown to be plasmid-encoded. Five of the plasmids were related; two were indistinguishable from the broad-host-range plasmid, RSF1010. The other three, two of which appeared to be identical, were shown to have regions of homology with RSF1010. One of these regions encompassed the sulfonamide resistance determinant while the other contained oriV, which also determines plasmid incompatibility. None of the plasmids could be associated with virulence or phase variation, and it appears likely that they have been acquired in response to antibiotic pressure.  相似文献   

2.
Lagodich  A. V.  Shtaniuk  Ya. V.  Prozorov  A. A.  Titok  M. A. 《Molecular Biology》2004,38(3):366-369
Restriction enzyme analysis, cloning, and sequencing showed that large (more than 90 kb) plasmids isolated from different Bacillus subtilisstrains are identical in structure of the region ensuring stable inheritance of plasmid replicons and are widespread in Belarussian environmental strains of B. subtilis.  相似文献   

3.
Antibiotic resistance plasmids from staphylococci and soil bacilli have been isolated and compared. A tetracycline resistance (Tcr) plasmid, indistinguishable from pT181, which is typical of Tcr plasmids that are widely dispersed among human clinical isolates of S. aureus, has been found also in bovine mastitis isolates. This plasmid, however, shows no detectable homology to a family of related Tcr plasmids, typified by pBC16, that is widely dispersed among aerobic spore-forming bacilli. However, and rather unexpectedly, pBC16 is highly homologous to and incompatible with pUB110, an S. aureus plasmid specifying kanamycin resistance. The two plasmids are homologous except for the region occupied by their resistance determinants, which has the appearance of a heterologous substitution. These results suggest the occurrence of natural plasmid transfer between staphylococci and soil bacilli.  相似文献   

4.
Metal and serine proteases were separated on the biospecific sorbent. Two different, homogeneous metal proteases were obtained by rechromatography of the metal protease. Activation energies, heat stability, molecular weights, influence of inhibitors, the dependence of activity on pH and temperature were determined. Properties of two metal proteases were compared with those of literary analogs.  相似文献   

5.
Using biospecific adsorbent and subsequent gel-filtration of Sephadex G-75 three fractions of serine proteases (I--III) having different physicochemical properties were isolated from Bac. subtilis. The first protease had molecular weight of 23000--24000 (pH optimum 6,5, activation energy 16,6 ccal/mol. The second one had molecular weight of 29000, pH optimum 11,0, activation energy 14,4 ccal/mol. The third protease was a mixture of proteases with average molecular weights 26000 and pH optima at 7,0, 8,5 and 11,0.  相似文献   

6.
7.
Five bufadienolides (1-5) isolated from the leaves of Kalanchoe pinnata and K. daigremontiana×tubiflora (Crassulaceae) were examined for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation in Raji cells induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate. All bufadienolides showed inhibitory activity, and bryophyllin A (1) exhibited the most marked inhibition (IC50=0.4 μM) among the tested compounds. Bryophyllin C (2), a reduction analogue of 1, and bersaldegenin-3-acetate (3) lacking the orthoacetate moiety were less active. These results strongly suggest that bufadienolides are potential cancer chemopreventive agents.  相似文献   

8.
127 strains of bacilli sensitive to different phages of Bacillus subtilis were isolated from the soil of Moscow and its country-side. In 6 strains, restriction and modification systems were discovered which differed from these previously described for Bac. subtilis BsuR system. Two strains has identical restriction-modification systems, and one strain possessed two different systems. Using DNA from all 6 strains, it was possible to transform competent cells of Bac. subtilis RUB834. Two of these 6 strains could serve as recipients in transformation and transfection experiments.  相似文献   

9.
The cryptic 95-kb plasmid p19 of the Bacillus subtilis 19 soil strain promotes the transfer of a small kanamycin resistance plasmid pUB110. To facilitate direct selection for p19 transfer, a plasmid derivative carrying the chloramphenicol resistance gene was constructed. The frequency of transfer of the large plasmid between cells of B. subtilis 19 approached 100% but was more than two orders of magnitude lower when the strain B. subtilis 168 was a recipient. However, when the restriction-deficient strain B. subtilis 168 was a recipient, the transfer efficiency was almost completely recovered. The effectiveness of pUB110 mobilization was virtually not altered in all these cases. pC194 was not mobilized by p19. The kinetics of p19 conjugative transfer is also presented.  相似文献   

10.
11.
Seventeen alkaliphilic halomonads were examined for the presence of plasmids. Of these, eight strains harbored one or more from 5.3 to 33 kb in size, the first plasmids to be identified from an alkaliphilic halomonad source. Restriction and hybridization analysis revealed three strains that maintained an identical 5.9-kb plasmid which we named pAH1, two that had an identical 33-kb plasmid, and three others, of which one carried two plasmids of 5.3 and 15 kb, the former being designated pAH2. The two final strains maintained plasmids of 15 and 20.5 kb. Restriction mapping of both pAH1 and pAH2 indicated that they have a number of unique restriction sites and are of a small enough size to make them suitable for vector construction.  相似文献   

12.
Highly purified GTP-cyclohydrolase was obtained by fractionation of cell extracts with ammonium sulfate, ion-exchange and hydrophobic chromatography. The N-terminal amino acid sequence and amino acid composition of the protein were determined. According to SDS-PAGE data, the molecular weight of the enzyme is 45 kDa. The active enzyme has several isoforms separable by native electrophoresis. The maximal enzyme activity is determined at 1.5 mM Mn2+; 70% of enzymatic activity is detected with Mg2+. The enzyme is inhibited by heavy metal ions and chelators and is inactive in the absence of thiol-reducing agents. The enzyme activity is detected in a broad range of pH with a maximum at pH 8.2. The pyrimidine product of the GTP-cyclohydrolase reaction. 2.5-diamino-6-hydroxy-4-ribosylaminopyrimidine-5'-phosphate was purified and identified. Another product of this reaction is pyrophosphate.  相似文献   

13.
In addition to one hypothetical viral sequence from Bacteriophage KVP40, the PfamA family of unknown function DUF458 (Pfam Accession No. PF04308) encompasses several uncharacterized bacterial proteins including Bacillus subtilis YkuK protein. Using Meta-BASIC, a highly sensitive method for detection of distant similarity between proteins, we assign DUF458 family members to the ribonuclease H-like (RNase H-like) superfamily. DUF458 sequences maintain all core secondary structure elements of RNase H-like fold and share several conserved, presumably active site residues with RNase HI, including an invariant DDE motif. In addition to providing a model structure for a previously uncharacterized protein family, this finding suggests that DUF458 proteins function as nucleases. The unusual phyletic pattern, together with a presence of DUF458 in several thermophilic organisms, may suggest a potential role of these proteins in DNA repair in stressful conditions such as an extreme heat or other stress that causes spore formation.  相似文献   

14.
Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, is less commonly isolated from ill humans. The multidrug-resistant isolate S. Kentucky CVM29188, isolated from a chicken breast sample in 2003, contains three plasmids (146,811 bp, 101,461 bp, and 46,121 bp), two of which carry resistance determinants (pCVM29188_146 [strAB and tetRA] and pCVM29188_101 [blaCMY-2 and sugE]). Both resistance plasmids were transferable by conjugation, alone or in combination, to S. Kentucky, Salmonella enterica serovar Newport, and Escherichia coli recipients. pCVM29188_146 shares a highly conserved plasmid backbone of 106 kb (>90% nucleotide identity) with two virulence plasmids from avian pathogenic Escherichia coli strains (pAPEC-O1-ColBM and pAPEC-O2-ColV). Shared avian pathogenic E. coli (APEC) virulence factors include iutA iucABCD, sitABCD, etsABC, iss, and iroBCDEN. PCR analyses of recent (1997 to 2005) S. Kentucky isolates from food animal, retail meat, and human sources revealed that 172 (60%) contained similar APEC-like plasmid backbones. Notably, though rare in human- and cattle-derived isolates, this plasmid backbone was found at a high frequency (50 to 100%) among S. Kentucky isolates from chickens within the same time span. Ninety-four percent of the APEC-positive isolates showed resistance to tetracycline and streptomycin. Together, our findings of a resistance-conferring APEC virulence plasmid in a poultry-derived S. Kentucky isolate and of similar resistance/virulence plasmids in most recent S. Kentucky isolates from chickens and, to lesser degree, from humans and cattle highlight the need for additional research in order to examine the prevalence and spread of combined virulence and resistance plasmids in bacteria in agricultural, environmental, and clinical settings.Nontyphoidal Salmonella enterica infections are one of the leading causes of bacterial food-borne gastroenteritis worldwide and an important public health problem in the United States, causing an estimated 1.4 million cases of infection, 15,000 hospitalizations, and more than 400 deaths annually in the United States alone (41). Although Salmonella infection usually presents with self-limiting diarrhea, in some patient populations, such as the immunocompromised, it can lead to life-threatening systemic infections that require effective and immediate antimicrobial therapy (21). The global emergence of multidrug resistance in S. enterica isolates from agricultural and clinical settings has therefore raised concerns and resulted in the establishment of several national resistance surveillance programs, such as the European Antimicrobial Resistance Surveillance System and the National Antimicrobial Monitoring System (NARMS) in the United States.In the United States, antimicrobial compounds are widely used in agriculture, not only to treat and prevent disease in plants, fruits, vegetables, and animals but also to promote growth in poultry and other livestock (25, 38). As a consequence, multidrug resistance is commonly detected in enterobacteria isolated from veterinary sources, including nontyphoidal Salmonella and other food-borne pathogens (40). Several studies have indicated the possibility that resistance reservoirs in animals can promote the transmission of resistance determinants from agricultural to clinical settings via food contaminants (1, 2, 45). Whether antimicrobial use in agriculture enhances the distribution and spectrum of antimicrobial resistance phenotypes in clinical settings has been the focus of vigorous debate within the public health and research communities (15, 19, 24, 27, 43). The extent of multidrug resistance in food-borne pathogens (10, 40), however, remains a concern. In 2006, only 17.7%, 25.0%, 38.8%, and 73.7% of the nontyphoidal Salmonella isolates from ground turkey, pork chop, chicken breast, and ground beef samples, respectively, showed susceptibility to all 16 antimicrobial compounds tested as part of the NARMS program (10). On the other hand, the overall prevalence of antimicrobial resistance phenotypes in nontyphoidal Salmonella isolates from human sources has slightly decreased, from 33.8% of all 876 isolates tested in 1996 to 19.4% of all 1,654 isolates tested in 2005 displaying a detectable resistance phenotype to at least one out of five antimicrobial subclasses as defined by the Clinical and Laboratory Standards Institute. However, in the same interval, increases from 0.4% to 2.4% and 0.2% to 2.9% in resistance to the clinically important subclasses of quinolones (nalidixic acid [Nal]) and cephalosporins (ceftiofur), respectively, were observed for the same set of human Salmonella isolates (6). Altogether, these reports demonstrate the need for further investigations on the influence of antimicrobial selection on the evolution, distribution, and transmission of resistance and virulence phenotypes among enteric bacteria derived from agricultural and clinical settings in order to prevent or at least limit the future spread of resistant zoonotic pathogens between these environments.Salmonella enterica subsp. enterica serovar Kentucky is widespread in poultry meats but is relatively uncommon in human cases of salmonellosis (7). S. Kentucky did not rank among the 20 most frequent Salmonella serotypes isolated from human sources in 2006 (7). In food-related sources, however, it is often found in animal samples and has been the most common serotype isolated from chickens (48.8%) (40) and chicken meat (38.8%) (10). At lower proportions, it is also present in turkey and cattle (2.6% and 3.6% of all nontyphoidal Salmonella isolates, respectively) (40). In the past decade, the fraction of S. Kentucky isolates from chickens, compared with other serotypes, has been increasing steadily, from 25% in 1997 to almost 50% in 2006 (40). Interestingly, while on average only 63 (0.174%) S. Kentucky isolates were reported between 1996 and 2004 among all nontyphoidal salmonellae from human samples, this number increased in 2005 (81 isolates [0.224%]) and 2006 (123 isolates [0.302%]) (7). Antimicrobial resistance phenotypes in S. Kentucky isolates from chicken meat are overrepresented compared to those in other serovars, with resistance to tetracycline (72.9%) and streptomycin (69.5%) being most commonly found (10). Although a causal connection between the increase of S. Kentucky in chickens and the number of human infections caused by the same serovar has not been demonstrated, further investigation is warranted, particularly in light of the high prevalence of antimicrobial resistance phenotypes in S. Kentucky isolates from chickens and the increasing resistance to beta-lactam compounds.Here, we describe the plasmid component of the genome of S. Kentucky CVM29188, a multidrug-resistant strain that was isolated in 2003 from a chicken meat sample with resistance to streptomycin, tetracycline, ampicillin, and ceftiofur. Using a combination of in silico and in vivo approaches, including comparative plasmid sequence analysis, conjugative plasmid transfer, and PCR-based plasmid screenings, we present new insights into the genetic basis for multidrug resistance phenotypes of this isolate that provide new clues about virulence evolution and host adaptation in this Salmonella serovar.  相似文献   

15.
16.
Analysis of 53 antibiotic resistant clinical strains of E. coli isolated from patients with various purulent inflammatory diseases is presented. According to the data of the electrophoretic study 83 per cent of them carried 2 to 6 plasmids. Thirteen of them carried the conjugation R-factor. The antibiotic resistance in the other strains was due to the non-conjugation plasmids.  相似文献   

17.
Plasmids and bacterial resistance to biocides   总被引:6,自引:2,他引:6  
Plasmid-encoded fu1 bacterial resistance to antibiotics and to anions and cations (including important mercurial and silver compounds) has been widely studied. Plasmid-mediated resistance to organic cationic agents which are important biocides has been described for chlorhexidine and quaternary ammonium compounds (and also for the less important acridines, diamidines and ethidium bromide) in antibiotic-resistant Staphylococcus aureus and Staph. epidermidis strains. Plasmids may also encode reduced biocide susceptibility of Gram-negative bacteria, but intrinsic resistance is likely to be of greater significance. Antibiotic resistance and biocide resistance may be linked but this is not always found clinically.  相似文献   

18.
Six isolates ofCaedibacter taeniospiralis, collected from four continents, were screened for plasmid DNA. Plasmid DNA species containing between 41.5 and 49.5 kilobase pairs (kb) were observed in all strains. Physical maps of plasmids were constructed by determining relative positions of the restriction endonuclease (BamHI,SalI,XhoI,SacI,PstI,AvaI, andEcoRI) recognition sequences in each plasmid. The physical map of the smallest plasmid (41.5 kb), pKAP30, is reflected in each of the plasmids isolated from the other strains ofC. taeniospiralis. Plasmid DNA from three of the isolates (strains 51 and 116 both from Indiana and strain 169 from Japan) each contain 43 kb, where 41.5 kb appear to be identical to pKAP30 (obtained from the Australian strain, A30). The extra 1.5 kb present in pKAP51, pKAP116, and pKAP169 is included as a single polynucleotide sequence. The 1.5-kb inclusion is located at apparently identical positions in pKAP116 and pKAP169 and at a totally different position in pKAP51. The two remaining plasmids, pKAP47 (from California strain 47) and pKAP298 (from Panama strain 298), both contain 49 kb to include a continuous 41.5-kb sequence that is apparently identical to pKAP30. The results indicate that the polynucleotide sequences of these plasmids are highly conserved and that the observed variations among them may be accounted for by transposable elements.  相似文献   

19.
20.
The conjugative transfer of RP4 plasmid from Escherichia coli to Azospirillum brasilense was detected after introduction and subsequent incubation of these microorganisms in soil. The plasmid transfer via transformation from Escherichia coli to Bacillus subtilis was observed in case both bacteria were growing together in sand containing sucrose solution. The possible reason for low frequency interspecies plasmid transformation under conditions close to natural habitats is poor survival of "domesticated" rather than wild type Bacillus subtilis strains and lack of competence state in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号