首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll样受体是机体天然免疫系统最重要的模式识别受体之一,通过识别病原寄生虫的病原相关分子模式,活化依赖和非依赖于髓样分化因子88的信号转导通路,诱导干扰素、炎症因子、趋化因子等的表达以及树突状细胞的成熟,抵御病原寄生虫的感染。因此,以下综述了Toll样受体对原病寄生虫,尤其对动物寄生性原虫与蠕虫感染的模式识别与天然免疫应答机制,以进一步理解病原寄生虫与宿主相互作用的复杂性,为寄生虫病的有效防治提供理论参考。  相似文献   

2.
Flavolipin, an amino acid-containing lipid isolated from Flavobacterium meningosepticum, induces many immune responses. It has been shown that flavolipin does not induce an immune response of macrophages derived from C3H/HeJ mice, which possess a point mutation in Toll-like receptor 4 (TLR4). To determine whether TLR4 or the molecular complex of TLR4 and TLR4 association molecule MD-2 mediates the flavolipin signal, flavolipin responsiveness was examined by measuring NF-kappaB activation in Ba/F3 cells and Ba/F3 transfectants expressing TLR4 or both TLR4 and MD-2. Flavolipin-induced NF-kappaB activation was detected in the cells expressing both TLR4 and MD-2, but not in the other cells. Expression of CD14 in the transfectant expressing both TLR4 and MD-2 increased the sensitivity to flavolipin. Furthermore, flavolipin stereoisomers were chemically synthesized, and their abilities to induce NF-kappaB activation were examined. (R)-Flavolipin, in which the configuration of the lipid moiety is R, induced NF-kappaB activation via the TLR4-MD-2 complex, but (S)-flavolipin did not. In this study, we demonstrated the involvement of TLR4-MD-2 and CD14 in flavolipin signaling and the importance of the (R)-configuration of the flavolipin lipid moiety for the induction of an immune response via TLR4-MD-2.  相似文献   

3.
Porphyromonas gingivalis (P. gingivalis) is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. P. gingivalis or its components such as lipopolysaccharide (LPS) upregulate the production of various inflammatory cytokines including interleukin (IL)-1 and IL-6 in HGFs. Recently, we demonstrated that the binding of P. gingivalis LPS to Toll-like receptor 4 (TLR4) on HGFs activates various second messenger systems (Biochem. Biophys. Res. Commun. 273, 1161-1167, 2000). In the present study, we examined the level of TLR4 expression on HGFs by flow cytometric analysis (FACS), and studied the levels of IL-1 and IL-6 in the culture medium upon LPS stimulation of HGFs by enzyme-linked immunosorbent assay (ELISA). Upon stimulation by P. gingivalis LPS for 24 h, HGFs that expressed a high level of TLR4 secreted significantly higher levels of IL-1 and IL-6 than HGFs that expressed a low level of TLR4. On the other hand, after stimulation with P. gingivalis LPS for 24 h, the level of TLR4 on the surface of HGFs decreased. These results suggest that the level of TLR4 expression on HGFs reflects the extent of inflammation in the gingival tissue, and that P. gingivalis LPS downregulates TLR4 expression on HGFs. These findings may be used to control inflammatory and immune responses in periodontal disease.  相似文献   

4.
The viaB locus enables Salmonella enterica serotype Typhi to reduce Toll-like receptor (TLR) dependent cytokine production in tissue culture models. This DNA region contains genes involved in the regulation ( tviA ), biosynthesis ( tviBCDE ) and export ( vexABCDE ) of the Vi capsule. Expression of the Vi capsule in S.  Typhimurium, but not expression of the TviA regulatory protein, reduced tumour necrosis factor-alpha (TNF-α) and IL-6 production by murine bone-marrow derived macrophages. Production of TNF-α and IL-6 was dependent on expression of TLR4 as stimulation of macrophages from TLR4−/− mice with S.  Typhimurium did not result in expression of these cytokines. Intraperitoneal infection of mice with S.  Typhimurium induced expression of TNF-α and inducible nitric oxide synthase (iNOS) in the liver. Introduction of the cloned viaB region into S.  Typhimurium reduced TNF-α and iNOS expression to levels observed after infection with a S.  Typhimurium msbB mutant. In contrast, no differences in TNF-α expression between the S.  Typhimurium wild type and strains expressing the Vi-capsule or carrying a mutation in msbB were observed after infection of TLR4−/− mice. We conclude that the Vi capsule prevents both in vitro and in vivo recognition of S.  Typhimurium lipopolysaccharide by TLR4.  相似文献   

5.
Cellular responses to LPS are mediated by a cell surface receptor complex consisting of Toll-like receptor 4 (TLR4), MD-2, and CD14. MD-2 is a secreted protein that interacts with the extracellular portion of TLR4. Site-directed mutagenesis was used to identify the regions of human MD-2 involved in its ability to bind TLR4 and confer LPS responsiveness. A separate region of MD-2 was found to mediate each function. MD-2 binding to TLR4 was dependent on Cys(95) and Cys(105), which might form an intramolecular disulfide bond. Hydrophilic and charged residues surrounding this area, such as R90, K91, D100, and Y102, also contributed to the formation of the TLR4-MD-2 complex. A different region of MD-2 was found to be responsible for conferring LPS responsiveness. This region is not involved in TLR4 binding and is rich in basic and aromatic residues, several of which cooperate for LPS responsiveness and might represent a LPS binding site. Disruption of the endogenous MD-2-TLR4 complex by expression of mutant MD-2 inhibited LPS responses in primary human endothelial cells. Thus, our data indicate that MD-2 interaction with TLR4 is necessary but not sufficient for cellular response to LPS. Either of the two functional domains of MD-2 can be disrupted to impair LPS responses and therefore represent attractive targets for therapeutic interventions.  相似文献   

6.
7.
Toll-like receptor (TLR) 4 has been identified as the primary receptor for enteric LPS, whereas TLR2 has been implicated as the receptor for Gram-positive and fungal cell wall components and for bacterial, mycobacterial, and spirochetal lipoproteins. Vascular endothelial cell (EC) activation or injury by microbial cell wall components such as LPS is of critical importance in the development of sepsis and septic shock. We have previously shown that EC express predominantly TLR4, and have very little TLR2. These cells respond vigorously to LPS via TLR4, but are unresponsive to lipoproteins and other TLR2 ligands. Here we show that LPS, TNF-alpha, or IFN-gamma induce TLR2 expression in both human dermal microvessel EC and HUVEC. Furthermore, LPS and IFN-gamma act synergistically to induce TLR2 expression in EC, and LPS-induced TLR2 expression is NF-kappaB dependent. LPS and IFN-gamma also up-regulate TLR4 mRNA expression in EC. These data indicate that TLR2 and TLR4 expression in ECs is regulated by inflammatory molecules such as LPS, TNF-alpha, or IFN-gamma. TLR2 and TLR4 molecules may render EC responsive to TLR2 ligands and may help to explain the synergy between LPS and lipoproteins, and between LPS and IFN-gamma, in inducing shock associated with Gram-negative sepsis.  相似文献   

8.
The lipopolysaccharide (LPS) and fimbriae of Porphyromonas gingivalis play important roles in periodontal inflammation and pathogenesis. We investigated fimbriae and LPS from several P. gingivalis strains in terms of relative dependence on Toll-like receptor (TLR) signalling partners or accessory pattern-recognition molecules mediating ligand transfer to TLRs, and determined induced assembly of receptor complexes in lipid rafts. Fimbriae could utilize TLR1 or TLR6 for cooperative TLR2-dependent activation of transfected cell lines, in contrast to LPS and a mutant version of fimbriae which displayed preference for TLR1. Whether used to activate human cell lines or mouse macrophages, fimbriae exhibited strong dependence on membrane-expressed CD14 (mCD14), which could not be substituted for by soluble CD14 (sCD14). In contrast, sCD14 efficiently substituted for mCD14 in LPS-induced cellular activation. LPS-binding protein was more important for LPS- than for fimbria-induced cell activation, whereas the converse was true for CD11b/CD18. Cell activation by LPS or fimbriae required lipid raft function and formation of heterotypic receptor complexes (TLR1-2/CD14/CD11b/CD18), although wild-type fimbriae additionally recruited TLR6. In summary, TLR2 activation by P. gingivalis LPS or fimbriae involves differential dependence on accessory signalling or ligand-binding receptors, which may differentially influence innate immune responses.  相似文献   

9.
The human MD-2 molecule is associated with the extracellular domain of human Toll-like receptor 4 (TLR4) and greatly enhances its LPS signaling. The human TLR4-MD-2 complex thus signals the presence of LPS. Little is known, however, about cell surface expression and LPS signaling of the TLR4-MD-2 complex in vivo. We cloned mouse MD-2 molecularly and established a unique mAb MTS510, which reacted selectively with mouse TLR4-MD-2 but not with TLR4 alone in flow cytometry. Mouse MD-2 expression in TLR4-expressing cells enhanced LPS-induced NF-kappaB activation, which was clearly inhibited by MTS510. Thioglycolate-elicited peritoneal macrophages expressed TLR4-MD-2, which was rapidly down-regulated in the presence of LPS. Moreover, LPS-induced TNF-alpha production by peritoneal macrophages was inhibited by MTS510. Collectively, the TLR4-MD-2 complex is expressed on macrophages in vivo and senses and signals the presence of LPS.  相似文献   

10.
BACKGROUND: Toll-like receptors (TLRs) recognize distinct pathogen-associated molecular patterns and trigger anti-microbial host defense responses. Several in vitro and in vivo studies in mice indicate that TLR2 and TLR4 are involved in the defense against Streptococcus pneumoniae. Studies have revealed associations between polymorphisms in TLRs and human diseases. The effect of polymorphisms in TLR2 and TLR4 in the human defense to S. pneumoniae has not been studied. METHODS: We genotyped 99 Caucasian patients with invasive pneumococcal disease and 178 Caucasian controls for the known R579H, P631H and R753Q polymorphisms in TLR2 and the D299G polymorphism in TLR4 with PCR-RFLP methods. RESULTS: The distribution of the TLR2 R579H, P631H and R753Q and TLR4 D299G variants was not significantly different between the patients and the controls. After stratification of the patient population by age, sex, diagnosis, and mortality no significant differences for the TLR2 R753Q genotype and TLR4 D299G genotype were found between various patient subgroups and between patient subgroups and the control population. It should be mentioned that for the TLR2 polymorphisms neither the control group nor the patient group contains homozygous mutant individuals. CONCLUSION: We found no association between TLR2 and TLR4 polymorphisms and invasive pneumococcal infection.  相似文献   

11.
Toll-like receptors (TLRs) are key elements in the innate immune response, functioning as pattern-recognition receptors for the detection and response to endotoxins and other microbial ligands. Inflammatory cytokines play an important role in the activation of the hypothalamic-pituitary-adrenal HPA axis during inflammation and sepsis. The newly recognized major role of TLR2 and TLR4 and the adrenal stress response during critical illnesses such as inflammation and sepsis demand comprehensive analysis of their interactions. Therefore, we analyzed TLR2 and TLR4 expression in human adrenal glands. Western blot analysis demonstrated the expression of TLR2 and TLR4 in the human adrenocortical cell line NCI-H295. Immunohistochemical analysis of normal human adrenal glands revealed TLR2 and TLR4 expression in the adrenal cortex, but not in the adrenal medulla. Considering the crucial role of the HPA axis and the innate immune response during acute sepsis or septic shock, elucidating the functional interaction of these systems should be of great clinical relevance.  相似文献   

12.
The lipopolysaccharide (LPS) secreted by Porphyromonas gingivalis is implicated in the initiation and progression of periodontitis. Human gingival fibroblasts (HGFs) are the major constituent of gingival connective tissue. In this study, we examined the expression of Toll-like receptor 4 (TLR4) on HGFs by flow cytometric analysis, and studied the signal transduction induced by LPS stimulation of HGFs by enzyme-linked immunosorbent assay, Western blotting, and immunoprecipitation. We show that LPS binds to HGFs, and that HGFs express TLR4 and myeloid differentiation primary response gene 88 (MyD88). P. gingivalis LPS-induced interleukin (IL)-1 production in HGFs was inhibited by anti-TLR4 antibody. P. gingivalis LPS treatment of HGFs activated several intracellular proteins including protein tyrosine kinases, and upregulated the expression of IL-1 receptor-associated kinase (IRAK), nuclear factor-kappaB (NF-kappaB), and activating protein-1 (AP-1), and these events were suppressed by anti-TLR4 monoclonal antibody. Our findings suggest that the binding of P. gingivalis LPS to TLR4 on HGFs activates various second messenger systems.  相似文献   

13.
We investigated the effect of Toll-like receptor 4 (TLR4) on the progression of murine Pneumocystis pneumonia. TLR4-mutant C3H/HeJ and wild-type C3H/HeN mice were infected with Pneumocystis after depletion of CD4 T cells. Mutant mice lost body weight more quickly and showed exacerbated pulmonary injury even though there was no difference in Pneumocystis organism burden in the lung. Mutant mice showed reduced levels of IL-10, IL-12p40 and MIP-2 accompanied by elevated levels of TNF-alpha and IL-6 in the bronchoalveolar lavage fluid compared with those of wild-type mice 8 weeks after the infection. In response to stimulation with Pneumocystis antigen, the production of IL-10, IL-12p40 and MIP-2 by alveolar macrophages was partially impaired in mutant mice, while that in wild-type mice was suppressed by the anti-TLR4/MD-2 mAb, MTS510. Unlike the response to lipopolysaccharide stimulation, TLR4-reconstituted HEK293 cells showed no elevated NF-kappaB activation after stimulation with Pneumocystis antigen. Taken together, these findings suggest that recognition of Pneumocystis by TLR4 helps to regulate the host inflammatory responses through cytokine and chemokine production by alveolar macrophages.  相似文献   

14.
Asthma results from an intrapulmonary allergen-driven Th2 response and is characterized by intermittent airway obstruction, airway hyperreactivity, and airway inflammation. An inverse association between allergic asthma and microbial infections has been observed. Microbial infections could prevent allergic responses by inducing the secretion of the type 1 cytokines, IL-12 and IFN-gamma. In this study, we examined whether administration of bacterial LPS, a prototypic bacterial product that activates innate immune cells via the Toll-like receptor 4 (TLR4) could suppress early and late allergic responses in a murine model of asthma. We report that LPS administration suppresses the IgE-mediated and mast cell-dependent passive cutaneous anaphylaxis, pulmonary inflammation, airway eosinophilia, mucus production, and airway hyperactivity. The suppression of asthma-like responses was not due to Th1 shift as it persisted in IL-12(-/-) or IFN-gamma(-/-) mice. However, the suppressive effect of LPS was not observed in TLR4- or NO synthase 2-deficient mice. Our findings demonstrate, for the first time, that LPS suppresses Th2 responses in vivo via the TLR4-dependent pathway that triggers NO synthase 2 activity.  相似文献   

15.
Toxoplasma gondii potently stimulates IFN-gamma production by both the innate and adaptive immune system as part of its host adaptation. This response is known to be dependent on an Myeloid Differentiation factor 88 signaling pathway used by Toll-like receptors (TLRs), a family of proteins involved in the recognition of microbial molecular patterns. In the following review, we summarise the evidence for specific TLR function in host resistance to T. gondii focusing on the recent discovery in the parasite of a profilin-like ligand that potently stimulates TLR11 and regulates the production of IL-12, a cytokine necessary for the protective IFN-gamma response. In addition, we discuss the hypothesis that TLR11 may have evolved as a general pattern recognition receptor for apicomplexan protozoa and that as highly conserved proteins associated with actin-based motility, profilins are logical ligand targets for this form of pathogen detection. Finally, we review the evidence for involvement of other TLR and TLR ligands in host resistance to T. gondii and discuss how such receptors might synergise with TLR11 in the innate response to the parasite.  相似文献   

16.
MD-2, a glycoprotein that is essential for the innate response to lipopolysaccharide (LPS), binds to both LPS and the extracellular domain of Toll-like receptor 4 (TLR4). Following synthesis, MD-2 is either secreted directly into the medium as a soluble, active protein, or binds directly to TLR4 in the endoplasmic reticulum before migrating to the cell surface. Here we investigate the function of the secreted form of MD-2. We show that secreted MD-2 irreversibly loses activity over a 24-h period at physiological temperature. LPS, but not lipid A, prevents this loss in activity by forming a stable complex with MD-2, in a CD14-dependent process. Once formed, the stable MD-2.LPS complex activates TLR4 in the absence of CD14 or free LPS indicating that the activating ligand of TLR4 is the MD-2.LPS complex. Finally we show that the MD-2.LPS complex, but not LPS alone, induces epithelial cells, which express TLR4 but not MD-2, to secrete interleukin-6 and interleukin-8. We propose that the soluble MD-2.LPS complex plays a crucial role in the LPS response by activating epithelial and other TLR4(+)/MD-2(-) cells in the inflammatory microenvironment.  相似文献   

17.
The response of Toll-like receptor 4 (TLR4) to lipopolysaccharide (LPS) is thought vital for resisting infection. Since aberrant TLR4 signaling may initiate inflammatory conditions such as the sepsis syndrome, we sought a component of normal cells that might provide local control of TLR4 activation. We found that antibodies that block chemokine receptor 4 (CXCR4) function enhanced TLR4 signaling, while increased expression of CXCR4 or addition of the CXCR4 ligand SDF-1 suppressed TLR4 signaling induced by LPS. These findings suggest that CXCR4 could exert local control of TLR4 and suggest the possibility of new therapeutic approaches to suppression of TLR4 function.  相似文献   

18.
19.
Toll-like receptors (TLRs) detect invading microbial pathogens and initiate immune responses as part of host defense mechanisms. They also respond to host-derived substances released from injured cells and tissues to ensure wound healing and tissue homeostasis. Dysregulation of TLRs increases the risk of chronic inflammatory diseases and immune disorders. Inflammatory events are often accompanied by oxidative stress, which generates lipid peroxidation products such as 4-hydroxy-2-nonenal (4-HNE). Therefore, we investigated if 4-HNE affects TLR activation. We found that 4-HNE blocked LPS (a TLR4 agonist)-induced activation of NFκB and IRF3 as well as expression of IFNβ, IP-10, RANTES, and TNFα. To investigate the mechanism of inhibition by 4-HNE, we examined its effects on TLR4 dimerization, one of the initial steps in TLR4 activation. 4-HNE suppressed both ligand-induced and ligand-independent receptor dimerization. The thiol donors, DTT and NAC, prevented the inhibitory effects of 4-HNE on TLR4 dimerization, and LC–MS/MS analysis showed that 4-HNE formed adducts with cysteine residues of synthetic peptides derived from TLR4. These observations suggest that the reactivity of 4-HNE with sulfhydryl moieties is implicated in the inhibition of TLR4 activation. Furthermore, inhibition of TLR4 activation by 4-HNE resulted in down-regulation of the phagocytic activity of macrophages. Collectively, these results demonstrate that 4-HNE blocks TLR4-mediated macrophage activation, gene expression, and phagocytic functions, at least partly by suppressing receptor dimerization. They further suggest that 4-HNE influences innate immune responses at sites of infection and inflammation by inhibiting TLR4 activation.  相似文献   

20.
Toll-like receptors (TLRs) 2 and 4 are signal transducers for lipopolysaccharide, the major proinflammatory constituent in the outer membrane of Gram-negative bacteria. We observed that membrane lipoproteins/lipopeptides from Borrelia burgdorferi, Treponema pallidum, and Mycoplasma fermentans activated cells heterologously expressing TLR2 but not those expressing TLR1 or TLR4. These TLR2-expressing cells were also stimulated by living motile B. burgdorferi, suggesting that TLR2 recognition of lipoproteins is relevant to natural Borrelia infection. Importantly, a TLR2 antibody inhibited bacterial lipoprotein/lipopeptide-induced tumor necrosis factor release from human peripheral blood mononuclear cells, and TLR2-null Chinese hamster macrophages were insensitive to lipoprotein/lipopeptide challenge. The data suggest a role for the native protein in cellular activation by these ligands. In addition, TLR2-dependent responses were seen using whole Mycobacterium avium and Staphylococcus aureus, demonstrating that this receptor can function as a signal transducer for a wide spectrum of bacterial products. We conclude that diverse pathogens activate cells through TLR2 and propose that this molecule is a central pattern recognition receptor in host immune responses to microbial invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号