首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the rapid technical progress in pharmaceutical industry in the past decade, it is still a great challenge to find new drugs and the situation seems more and more serious. However, the history of pharmaceutical industry clearly indicated that the significance of drug discovery went far beyond providing new drugs. For instance, drugs or candidates could be used as selective probes to reveal novel cellular mechanisms, which is a fundamental tenet of chemical biology. More interestingly, accumulating evidence indicates that drugs and candidates can find important use in stem cell biology. Not only approved drugs but also undeveloped pharmacological agents could serve as efficient agents to regulate stem cell fate. Moreover, the target and activity knowledge accumulated during the drug discovery process will help select the stem cell fate modulators in a rational manner. As the progress in stem cell biology will bring positive influence to drug discovery, it can be expected that the current drug discovery efforts will finally bear great fruits in the future.  相似文献   

2.
3.
从上世纪50年代发现DNA双螺旋结构以来,科学家积累了大量的有关生物的生理和病理分子机理的知识。人们期望从生物学的基础研究中衍生出高效、环保的生物相关制造产业,为人类服务。为了发展生物制造产业,生物基础元件蛋白质和基因的制造技术必不可少。最近出现了一种基于基因高频突变的蛋白质人工进化技术。这一技术已成功应用于新抗体的产生,以及抗体和荧光蛋白质的改造。这一技术的进一步发展将成为蛋白质改造、乃至新蛋白质制造的重要工具。  相似文献   

4.
5.
At the start of the cell-division programme, proteins must be assembled onto replication origins to establish competence for initiation of DNA synthesis. At the correct moment, other effectors must then coordinate appropriate firing of the various origins to control entry into and progress through S phase. These processes are key targets of cell-cycle control, and understanding their regulation will provide a deeper knowledge of the mechanisms controlling cell proliferation.  相似文献   

6.
Disinfectants and biocides are a chemically diverse group of agents which are generally considered to exhibit poor selective toxicity. This should not be mistaken for poor target specificity, however, and much is now known concerning the damaging interactions which may arise between bacterial cell and disinfectant agent. Critical governing features of these interactions are the physicochemical characteristics of the chemical agent, cell morphology, and the physiological status of the microorganism. Antibacterial events include membrane disruption, macromolecule dysfunction, and metabolic inhibition; the consequential effect is determined by the relative contribution(s) of the target(s) to microbial cell survival and the possible initiation of self-destructive processes. Disinfection kinetics offer a measure to differentiate between physiochemical and chemical interactions.Increasingly demanding disinfectant applications require more sophisticated use of biocidal systems. Approaches include: agents in combination, whereby a knowledge of mechanism of action assists in designing optimal mixtures; intracellular biocide delivery, using cellular transport processes to overcome cellular barriers; and targeted donation of biocide from delivery systems, requiring an understanding of target reactivity.A knowledge of disinfection mechanisms provides a basis from which novel chemistries and synergistic combinations may be developed.  相似文献   

7.
In biotechnological processes, often cell disruption has been an inevitable step as current host cells express most of the desired products intracellularly. Thus, an appropriate cell disruption technique must be selected considering different factors including the target product, process scale, and cell wall structure. In the current study, as a novel method, the efficacy of cell disruption via laser was tested qualitatively and quantitatively in batch and continuous systems, respectively. Laser-induced cell lysis can be a clean, rapid and convenient alternative to the other conventional disruption techniques. Our investigations in the continuous system with a flow rate of 800 μL/sec proved efficient (~ 90%) Pichia pastoris cell disruption at the wavenumber 1,064 nm with the energy input of 284 mW after four complete rounds of circulation. The main mechanism of cell disruption is assumed to be thermolysis via instant heat increase in the laser-treated spot. The results of the current study showed that continuous laser system could be applied in laboratory and industry scale for cell disruption.  相似文献   

8.
9.
The molecular biology of cancer   总被引:12,自引:0,他引:12  
The process by which normal cells become progressively transformed to malignancy is now known to require the sequential acquisition of mutations which arise as a consequence of damage to the genome. This damage can be the result of endogenous processes such as errors in replication of DNA, the intrinsic chemical instability of certain DNA bases or from attack by free radicals generated during metabolism. DNA damage can also result from interactions with exogenous agents such as ionizing radiation, UV radiation and chemical carcinogens. Cells have evolved means to repair such damage, but for various reasons errors occur and permanent changes in the genome, mutations, are introduced. Some inactivating mutations occur in genes responsible for maintaining genomic integrity facilitating the acquisition of additional mutations. This review seeks first to identify sources of mutational damage so as to identify the basic causes of human cancer. Through an understanding of cause, prevention may be possible. The evolution of the normal cell to a malignant one involves processes by which genes involved in normal homeostatic mechanisms that control proliferation and cell death suffer mutational damage which results in the activation of genes stimulating proliferation or protection against cell death, the oncogenes, and the inactivation of genes which would normally inhibit proliferation, the tumor suppressor genes. Finally, having overcome normal controls on cell birth and cell death, an aspiring cancer cell faces two new challenges: it must overcome replicative senescence and become immortal and it must obtain adequate supplies of nutrients and oxygen to maintain this high rate of proliferation. This review examines the process of the sequential acquisition of mutations from the prospective of Darwinian evolution. Here, the fittest cell is one that survives to form a new population of genetically distinct cells, the tumor. This review does not attempt to be comprehensive but identifies key genes directly involved in carcinogenesis and demonstrates how mutations in these genes allow cells to circumvent cellular controls. This detailed understanding of the process of carcinogenesis at the molecular level has only been possible because of the advent of modern molecular biology. This new discipline, by precisely identifying the molecular basis of the differences between normal and malignant cells, has created novel opportunities and provided the means to specifically target these modified genes. Whenever possible this review highlights these opportunities and the attempts being made to generate novel, molecular based therapies against cancer. Successful use of these new therapies will rely upon a detailed knowledge of the genetic defects in individual tumors. The review concludes with a discussion of how the use of high throughput molecular arrays will allow the molecular pathologist/therapist to identify these defects and direct specific therapies to specific mutations.  相似文献   

10.
Proteases play key roles in many biological processes and have numerous applications in biotechnology and industry. Recent advances in the genetics, genomics and biochemistry of the halophilic Archaea provide a tremendous opportunity for understanding proteases and their function in the context of an archaeal cell. This review summarizes our current knowledge of haloarchaeal proteases and provides a reference for future research.  相似文献   

11.
Viruses are known to be abundant, ubiquitous, and to play a very important role in the health and evolution of life organisms. However, most biologists have considered them as entities separate from the realm of life and acting merely as mechanical artifacts that can exchange genes between different organisms. This article reviews some definitions of life organisms to determine if viruses adjust to them, and additionally, considers new discoveries to challenge the present definition of viruses. Definitions of life organisms have been revised in order to validate how viruses fit into them. Viral factories are discussed since these mini-organelles are a good example of the complexity of viral infection, not as a mechanical usurpation of cell structures, but as a driving force leading to the reorganization and modification of cell structures by viral and cell enzymes. New discoveries such as the Mimivirus, its virophage and viruses that produce filamentous tails when outside of their host cell, have stimulated the scientific community to analyze the current definition of viruses. One way to be free for innovation is to learn from life, without rigid mental structures or tied to the past, in order to understand in an integrated view the new discoveries that will be unfolded in future research. Life processes must be looked from the complexity and trans-disciplinarity perspective that includes and accepts the temporality of the active processes of life organisms, their interdependency and interrelation among them and their environment. New insights must be found to redefine life organisms, especially viruses, which still are defined using the same concepts and knowledge of the fifties.  相似文献   

12.
The story of cell fusion: big lessons from little worms   总被引:7,自引:0,他引:7  
The ability of two or more cells to unite to form a new syncytial cell has been utilized in metazoans throughout evolution to form many complex organs, such as muscles, bones and placentae. This requires migration, recognition and adhesion between cells together with fusion of their plasma membranes and rearrangement of their cytoplasmic contents. Until recently, understanding of the mechanisms of cell fusion was restricted to fusion between enveloped viruses and their target cells. The identification of new factors that take part in developmental cell fusion in C. elegans opens the way to understanding how cells fuse and what the functions of this process are. In this review, we describe current knowledge on the mechanisms and putative roles of developmental cell fusion in C. elegans and how cell fusion is regulated, together with other intercellular processes to promote organogenesis.  相似文献   

13.
The cell body of a lesioned neuron must receive accurate and timely information on the site and extent of axonal damage, in order to mount an appropriate response. Specific mechanisms must therefore exist to transmit such information along the length of the axon from the lesion site to the cell body. Three distinct types of signals have been postulated to underlie this process, starting with injury-induced discharge of axon potentials, and continuing with two distinct types of retrogradely transported macromolecular signals. The latter include, on the one hand, an interruption of the normal supply of retrogradely transported trophic factors from the target; and on the other hand activated proteins emanating from the injury site. These activated proteins are termed "positive injury signals", and are thought to be endogenous axoplasmic proteins that undergo post-translational modifications at the lesion site upon axotomy, which then target them to the retrograde transport system for trafficking to the cell body. Here, we summarize the work to date supporting the positive retrograde injury signal hypothesis, and provide some new and emerging proteomic data on the system. We propose that the retrograde positive injury signals form part of a complex that is assembled by a combination of different processes, including post-translational modifications such as phosphorylation, regulated and transient proteolysis, and local axonal protein synthesis.  相似文献   

14.
胞吐是存在于所有真核生物的一种极其重要的细胞活动,直接参与了激素和神经信号的分泌、细胞生长、细胞极性的建立,细胞分裂和细胞壁的形成等多项生理过程。在胞吐过程中,高尔基后转运膜泡与靶膜的识别是由进化上高度保守的胞泌复合体(exocyst)介导的。该复合体由8个蛋白亚基构成,其中EXO70是组成胞泌复合体功能的关键亚基,可与小G蛋白和膜脂互作,参与复合体在靶膜组装。目前,对植物胞泌复合体功能的了解非常有限,已有证据显示其广泛参与了细胞生长,细胞壁形成、细胞分裂等多种生物学过程。与酵母和动物相比,植物胞泌复合体的一个显著特征是:EXO70在高等植物基因组中存在多个同源基因,其具体生物学功能尚不清楚。本文综述胞泌复合体的研究进展,重点讨论植物EXO70的多基因家族,推测不同的EXO70可能参与了组织细胞或运载底物特异的膜泡转运过程。  相似文献   

15.
Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.  相似文献   

16.
17.
Tick-borne encephalitis virus (TBEV) causes one of the most dangerous human neuroinfections in Europe and Asia. To infect neurons it must cross the blood-brain-barrier (BBB), and presumably also cells adjacent to the BBB, such as astrocytes, the most abundant glial cell type. However, the knowledge about the viral infection of glial cells is fragmental. Here we studied whether TBEV infects rat astrocytes. Rats belong to an animal group serving as a TBEV amplifying host. We employed high resolution quantitative fluorescence microscopy to investigate cell entry and cytoplasmic mobility of TBEV particles along with the effect on the cell cytoskeleton and cell survival. We report that infection of astrocytes with TBEV increases with time of exposure to TBEV and that with post-infection time TBEV particles gained higher mobility. After several days of infection actin cytoskeleton was affected, but cell survival was unchanged, indicating that rat astrocytes resist TBEV-mediated cell death, as reported for other mammalian cells. Therefore, astrocytes may present an important pool of dormant TBEV infections and a new target for therapeutic intervention.  相似文献   

18.
Ramos C  Teissié J 《Biochimie》2000,82(5):511-518
The molecular bases of the exocytosis process remain poorly known. Many proteins have been recognized to play key roles in the machinery. Their functions are well characterized in the specificity of the docking processes. Forces involved in the merging of the two partners must take into account the physics of membrane interfaces. The target membrane and the vesicle are both electrically charged interfaces. Strong electrostatic fields are triggered when they are brought in close neighborhood. These fields are high enough to induce an electropermeabilisation process. It is now well known that when applied on a cell, an external field induces a modulation of the transmembrane potential difference. When high enough the transmembrane potential may induce a membrane destabilisation. This results in a free exchange of polar molecules across well defined parts of the cell surface. Furthermore, when permeabilization is present on two cells, if those parts of the cell surfaces are brought in close contact, membrane merging occurs spontaneously. Cell fusion results from this membrane coalescence. The similarity with what is taking place in exocytosis is striking. The present review describes the state-of-the-art in the knowledge on electrofusion. It is emphasized that it results from electropermeabilisation and not from a direct effect of the external field. A local destabilisation of the vesicle membrane results from electrostatic interactions while keeping unaffected its viability. Such processes appear relevant for what takes place during exocytosis.  相似文献   

19.
Following up last issue's editorial topic, GaAs evangelism, another prime driving factor for the IC industry is the need for more design freedom. Before any new technology can be taken up, there must be enough engineers out there versed in the methodology. This obvious statement begs the question: where does this knowledge come from? Most noticeably from the IC foundries who are, for the most part, keen to restrict the spread of this knowledge outside their “club” of users. Is this in the best interest of progress in the GaAs industry as a whole?  相似文献   

20.
Microorganisms synthesize several compounds with antimicrobial activity in order to compete or defend themselves against others and ensure their survival. In this line, the cell wall is a major protective barrier whose integrity is essential for many vital bacterial processes. Probably for this reason, it represents a ??hot spot?? as a target for many antibiotics and antimicrobial peptides such as bacteriocins. Bacteriocins have largely been recognized by their pore-forming ability that collapses the selective permeability of the cytoplasmic membrane. However, in the last few years, many bacteriocins have been shown to inhibit cell wall biosyntheis alone, or in a concerted action with pore formation like nisin. Examples of cell wall-active bacteriocins are found in both Gram-negative and Gram-positive bacteria and include a wide diversity of structures such as nisin-like and mersacidin-like lipid II-binding bacteriocins, two-peptide lantibiotics, and non-modified bacteriocins. In this review, we summarize the current knowledge on these antimicrobial peptides as well as the role, composition, and biosynthesis of the bacterial cell wall as their target. Moreover, even though bacteriocins have been a matter of interest as natural food antimicrobials, we propose them as suitable tools to provide new means to improve biotechnologically relevant microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号