首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The separation by Sephadex G-50 of two subfractions, peak I and II, from the brain soluble fraction has been previously described. These fractions were able to stimulate and inhibit synaptosomal membrane Na+,K(+)-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gómez de Lima, Neurochem. Res. 11, 933-948, 1986). Experimental evidence indicates that the alteration of Na+,K(+)-ATPase activity may result in changes of renal and cardiovascular parameters. In the present study, we have analyzed the effect of peak I and II fractions prepared from rat cerebral cortex on water and sodium excretion and on heart rate and arterial pressure in normotensive anesthetized rats. It was observed that water and sodium excretion were not modified by the administration of peak I fraction but that they were increased by peak II fraction. The cardiovascular parameters were not significantly modified by either of the fractions. The results indicate that brain soluble factor (s) which is (are) present in peak II fraction may modify some aspects of renal physiology after systemic administration.  相似文献   

2.
Previous evidence from this laboratory indicated that catecholamines and brain endogenous factors modulate Na+, K+-ATPase activity of the synaptosomal membranes. The filtration of a brain total soluble fraction through Sephadex G-50 permitted the separation of two fractions-peaks I and II-which stimulated and inhibited Na+, K+-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gomez de Lima, Neurochem. Res.11, 1986, 933). In order to study tissue specificity a rat kidney total soluble was fractionated in Sephadex G-50 and kidney peak I and II fractions were separated; as control, a total soluble fraction prepared from rat cerebral cortex was also processed. The UV absorbance profile of the kidney total soluble showed two zones and was similar to the profile of the brain total soluble. Synaptosomal membranes Na+, K+- and Mg2+-ATPases were stimulated 60–100% in the presence of kidney and cerebral cortex peak I; Na+, K+-ATPase was inhibited 35–65% by kidney peak II and 60–80% by brain peak II. Mg2+-ATPase activity was not modified by peak II fractions. ATPases activity of a kidney crude microsomal fraction was not modified by kidney peak I or brain peak II, and was slightly increased by kidney peak II or brain peak I. Kidney purified Na+, K+-ATPase was increased 16–20% by brain peak I and II fractions. These findings indicate that modulatory factors of ATPase activity are not exclusive to the brain. On the contrary, there might be tissue specificity with respect to the enzyme source.  相似文献   

3.
To evaluate the effect of galactose metabolic disorders on the brain Na+,K+-ATPase in suckling rats. Separate preincubations of various concentrations (1-16 mM) of the compounds galactose-1-phosphate (Gal-1-P) and galactitol (galtol) with whole brain homogenates at 37 degrees C for 1 h resulted in a dose dependent inhibition of the enzyme whereas the pure enzyme (from porcine cerebral cortex) was stimulated. Glucose-1-phosphate (Glu-1-P) or galactose (Gal) stimulated both rat brain Na+,K+-ATPase and pure enzyme. A mixture of Gal-1-P (2 mM), galtol (2 mM) and Gal (4 mM), concentrations commonly found in untreated patients with classical galactosemia, caused a 35% (p < 0.001) rat brain enzyme inhibition. Additionally, incubation of a mixture of galtol (2 mM) and Gal (1 mM), which is usually observed in galactokinase deficient patients, resulted in a 25% (p < 0.001) brain enzyme inactivation. It is suggested that: a) The indirect inhibition of the brain Na+,K+-ATPase by Gal-1-P should be due to the presence of the epimer Gal and phosphate and that the pure enzyme direct activation by Gal-1-P and Glu-1-P to the presence of phosphate only. b) The observed brain Na+,K+-ATPase inhibitions in the presence of toxic concentrations of Gal-1-P and/or galtol could modulate the neural excitability, the metabolic energy production and the catecholaminergic and serotoninergic system.  相似文献   

4.
The Na+, K+-ATPase activity in the homogenate and in subcellular fractions of different parts of the brain of adult and old rats was studied in comparison. The content of cholesterol in the above fractions was also determined. In old age the Na+, K+-ATPase activity in the homogenate and microsomal fraction of the cerebral hemispheres' cortex decreases, while the Mg2+-ATPase activity in the cortex microsomal fraction increases. The age-related Na+, K+- and Mg2+-ATPase activity in the myelin of the stem in the synaptic plasma membranes of hemispheres and the brain stem remains unchanged whereas in the myelin fraction of hemispheres it grows. The content of cholesterol in the brain of old rats as compared with adult ones increases in the microsomal fraction and remains unchanged in synaptic membranes. The possible role of age-related modification of lipid component of plasma membranes in the above changes of Na+, K+-ATPase activity is discussed.  相似文献   

5.
A mechanism of K-insensitive, ouabain-dependent liberation of Na+ from the cell during an increase in ADP intracellular concentration is studied. It is shown that the increase in the ADP/ATP ratio does not change the Na+, K+-ATPase affinity to K+ ions and does not result in the Na-activated, K-independent ATPase reaction. ADP protects ATPase from the inhibition by ouabain which is accounted for by a decrease in the concentration of a glycoside-sensitive form of the enzyme E2-P due to a turnover of the phosphokinase step of the reaction, but not due to the binding of free Mg2+ ions. The results obtained suggest that the increase in ADP concentration within the cell activates Na-Nan exchange along Na-transporting channels of the ionic pump.  相似文献   

6.
Leptin, secreted by adipose tissue, is involved in the pathogenesis of arterial hypertension, however, the mechanisms through which leptin increases blood pressure are incompletely elucidated. We investigated the effect of leptin, administered for different time periods, on renal Na(+),K(+)-ATPase activity in the rat. Leptin was infused under anesthesia into the abdominal aorta proximally to the renal arteries for 0.5-3 h. Leptin administered at doses of 1 and 10 microg/min per kg for 30 min decreased the Na(+),K(+)-ATPase activity in the renal medulla. This effect disappeared when the hormone was infused for > or =1 h. Leptin infused for 3 h increased the Na(+),K(+)-ATPase activity in the renal cortex and medulla. The stimulatory effect was abolished by a specific inhibitor of Janus kinases (JAKs), tyrphostin AG490, as well as by an NAD(P)H oxidase inhibitor, apocynin. Leptin increased urinary excretion of hydrogen peroxide (H(2)O(2)) between 2 and 3 h of infusion. The effect of leptin on renal Na(+),K(+)-ATPase and urinary H(2)O(2) was augmented by a superoxide dismutase mimetic, tempol, and was abolished by catalase. In addition, infusion of H(2)O(2) for 30 min increased the Na(+),K(+)-ATPase activity. Inhibitors of extracellular signal regulated kinases (ERKs), PD98059 or U0126, prevented Na(+),K(+)-ATPase stimulation by leptin and H(2)O(2). These data indicate that leptin, by acting directly within the kidney, has a delayed stimulatory effect on Na(+),K(+)-ATPase, mediated by JAKs, H(2)O(2) and ERKs. This mechanism may contribute to the abnormal renal Na(+) handling in diseases associated with chronic hyperleptinemia such as diabetes and obesity.  相似文献   

7.
The diverse damaging effects of dopamine (DA) oxidation products on brain subcellular components including mitochondrial electron transport chain have been implicated in dopaminergic neuronal death in Parkinson's disease. It has been shown in this study that DA (50-200 μM) causes dose-dependent inhibition of Na+, K+-ATPase activity of rat brain crude synaptosomal-mitochondrial fraction during in vitro incubation up to 2 h. The enzyme inactivation is prevented by catalase and the metal-chelator (diethylenetriamine penta-acetic acid) but not by superoxide dismutase or hydroxyl-radical scavengers like mannitol and dimethylsulphoxide (DMSO). Further, reduced glutathione and cysteine, markedly prevent DA-mediated inactivation of Na+, K+-ATPase. Under similar conditions of incubation, DA (200 μM) leads to the formation of quinoprotein adducts (protein-cysteinyl catechol) with synaptosomal-mitochondrial proteins and the phenomenon is also prevented by glutathione (5 mM) or cysteine (5 mM).

The available data imply that the inactivation of Na+, K+-ATPase in this system involves both H2O2 and metal ions. The reactive quinones by forming adducts with protein thiols also probably contribute to the process, since reduced glutathione and cysteine which scavenge quinones from the system protect Na+, K+-ATPase from DA-mediated damage. The inactivation of neuronal Na+, K+-ATPase by DA may give rise to various toxic sequelae with potential implications for dopaminergic cell death in Parkinson's disease.  相似文献   

8.
Neurotensin is a peptide present in mammalian CNS and peripheral tissues, which may play a major role in neurotransmission or neuromodulation, subserving diverse physiological functions. We studied the effect of added neurotensin on ATPase activities in synaptosomal membranes isolated from rat cerebral cortex. Neurotensin at 3 x 10(-8)-3 x 10(-6) M concentration decreased 20-44% Na+,K+-ATPase activity but failed to modify Mg2+-ATPase activity; lower neurotensin concentrations (3 x 10(-14)-3 x 10(-10) M) had no effect on enzyme activities. This inhibitory effect was abolished by neurotensin heating, by enzyme preincubation with neurotensin during periods exceeding 10 min, or by adding 1 x 10(-6) M SR 48692, a high affinity neurotensin receptor antagonist. Levocabastine, which blocks low affinity neurotensin receptor, failed to alter enzyme inhibition by the peptide. It is suggested that the sodium pump may be a target for neurotensin effects at neuronal level involving the participation of high affinity neurotensin receptor.  相似文献   

9.
The effect of ethonium, a local anesthetic, on the membrane preparations of brain N+, K+-ATPase was studied by fluorescent, radioisotopic, electron-microscopic and electrophysiological methods. Ethonium is established to affect the formation of an intermediate phosphorylated product and has no pronounced destructive effect on the membrane. It changes the fluorescence intensity of 2-toluidinonaphthalen-6-sulphonate (TNS), astrafloxin (AF) and fluorene probes in a suspension of the Na+, K+-ATPase preparations, which evidences for ethonium-induced changes in the structure of membrane fragments.  相似文献   

10.
Enzyme activity, representing the sites of K+-stimulated p-nitrophenylphosphatase, a component of the sodium, potassium-stimulated-adenosinetriphosphatase system, has been localized in the somatosensory cortex of the rat brain. The reaction product is most obviously associated with fibers that are thought to be axons and dendrites. Large dendrite-like fibers appear to arise in layer 5 of the cortex and arborize in layers 1 through 4. Smaller, reactive fibers are found throughout the cortical layers. Neuron cell bodies did not exhibit substantial enzymatic activity. It did not appear that glia contributed significantly to the activity in cerebral cortex.  相似文献   

11.
This study has compared the effect of freezing in situ and decapitation without freezing on the Na+,K+-ATPase activity in mouse cerebral cortex homogenates under otherwise comparable conditions. The Na+,K+-ATPase activity was substantially influenced by the sample preparation; a twofold value was obtained for frozen samples as compared to that in fresh samples. Not only basal activity, but also the sensitivity of the enzyme towards vanadate inhibition depended on tissue treatment; lesser inhibition was observed in frozen samples. These findings suggest the possible implication of altered enzyme characteristics due to sample preparation while studying the influence of various other factors on enzyme activity.  相似文献   

12.
13.
The total fractions of gangliosides and cerebrosides isolated from the tissue of human brain were studied for their effect on the Na+, K+-ATPase activity of native erythrocytes and their membranes. It is shown that gangliosides depending on time of their preincubation with the enzyme preparation and concentration produce both the activating and inhibiting action and cerebrosides--only the inhibiting one. Gangliosides inhibit the transport ATPase activity noncompetitively with respect to ATP and Na+ and competitively--to K+, cerebrosides inhibit it noncompetitively with respect to all ATPase activators.  相似文献   

14.
AimsThis study examines the effect of chronic ouabain-treatment on renal Na+ handling in 12-week and 52-week old rats.Main methodsWistar Kyoto rats aged 5 weeks or 45 weeks were treated with ouabain or vehicle during 7 weeks. Blood pressure was measured in conscious animals throughout the study. After 7 weeks of treatment urinary electrolyte concentration, Na+,K+-ATPase activity and α1-subunit expression were determined in 12-week and 52-week old rats.Key findingsIn 12-week and 52-week old rats ouabain produced a significant increase in systolic blood pressure. Although no differences were observed in Na+ excretion in these animals, 12-week old ouabain-treated rats had lower Na+,K+-ATPase activity in proximal tubules. However, 12-week old ouabain-treated rats had decreased fractional excretion of Na+. In proximal tubules of 52-week old rats Na+,K+-ATPase activity did not differ between vehicle and ouabain-treated groups.SignificanceOur results show that in Wistar Kyoto rats renal response to ouabain treatment may be age-dependent and that the hypertensive effect of ouabain is independent of the effect on renal Na+,K+-ATPase.  相似文献   

15.
An in vitro single radiation of helium-neon laser (power flux density being 2 mW/cm2 exposure--1 and 3 min) does not change the concentration of Na+ and K+, activity of Na+, K+-dependent ATPase in erythrocytes and does not affect the intensity of active Na transport through their membrane in the donor blood. The 5 min laser action decreases the level of K+ and increases that of Na+ in the erythrocytes, activates Na+, K+-ATPases and intensifies the active Na+ transport.  相似文献   

16.
Na+, K(+)-ATPase preparations of the rat and bovine brain and kidney were studied for ouabain sensitivity. Differences in apparent affinities to inhibitor of alpha(+)- and alpha-isozymes of Na+, K(+)-ATPase catalytic subunit were detected only in rat tissues but not in bovine ones. It is concluded that glycoside-sensitive and glycoside-resistant enzymic forms are not fully identical to alpha(+)- and alpha-subunit forms of Na+, K(+)-ATPase.  相似文献   

17.
《Life sciences》1993,52(24):PL273-PL278
3H-ouabain binding and ouabain-inhibitable 86Rb+ (K+) uptake were investigated as a means to identify a third isoform of Na+, K+-ATPase in crude synaptosome preparations. The specific binding of low concentrations (10 nM and 1 uM) of 3H-ouabain, in crude synaptosome preparations, was markedly inhibited by K+ (0.5–5 mM). Accordingly, 86Rb+ (K+) uptake, in the presence of 5 mM K+ was not sensitive to inhibition by low concentrations (10−11–10−7 M) of ouabain. Higher concentrations (10−6–10−2.6 M) of ouabain resulted in a biphasic inhibition of K+ uptake, which distinguished the activities of the presumed alpha 2 and alpha 1 isozymes of Na+, K+-ATPase. Reduction of K+ (1.25 mM and 0.5 mM) in the incubation, resulted in the observation of a third component of ouabain- sensitive K+ uptake. This Na+, K+-ATPase activity, which was defined, pharmacologically, as very sensitive (VS) to ouabain, exhibited IC50s of 3.6 nM and 92 nM at 1.25 mM K+ and 0.5 mM K+, respectively. Inhibition of ouabain binding and VS-dependent K+ uptake, at a high, physiological cocentration (5 mM) of K+, suggests that VS may be an inactive isoform of brain Na+, K+-ATPase under resting conditions.  相似文献   

18.
Palytoxin (PTX) opens a pathway for ions to pass through Na,K-ATPase. We investigate here whether PTX also acts on nongastric H,K-ATPases. The following combinations of cRNA were expressed in Xenopus laevis oocytes: Bufo marinus bladder H,K-ATPase α2- and Na,K-ATPase β2-subunits; Bufo Na,K-ATPase α1- and Na,K-ATPase β2-subunits; and Bufo Na,K-ATPase β2-subunit alone. The response to PTX was measured after blocking endogenous Xenopus Na,K-ATPase with 10 μm ouabain. Functional expression was confirmed by measuring 86Rb uptake. PTX (5 nm) produced a large increase of membrane conductance in oocytes expressing Bufo Na,K-ATPase, but no significant increase occurred in oocytes expressing Bufo H,K-ATPase or in those injected with Bufo β2-subunit alone. Expression of the following combinations of cDNA was investigated in HeLa cells: rat colonic H,K-ATPase α1-subunit and Na,K-ATPase β1-subunit; rat Na,K-ATPase α2-subunit and Na,K-ATPase β2-subunit; and rat Na,K-ATPase β1- or Na,K-ATPase β2-subunit alone. Measurement of increases in 86Rb uptake confirmed that both rat Na,K and H,K pumps were functional in HeLa cells expressing rat colonic HKα1/NKβ1 and NKα2/NKβ2. Whole-cell patch-clamp measurements in HeLa cells expressing rat colonic HKα1/NKβ1 exposed to 100 nm PTX showed no significant increase of membrane current, and there was no membrane conductance increase in HeLa cells transfected with rat NKβ1- or rat NKβ2-subunit alone. However, in HeLa cells expressing rat NKα2/NKβ2, outward current was observed after pump activation by 20 mm K+ and a large membrane conductance increase occurred after 100 nm PTX. We conclude that nongastric H,K-ATPases are not sensitive to PTX when expressed in these cells, whereas PTX does act on Na,K-ATPase.  相似文献   

19.
20.
The effects of phenylalanine (PHE) and its deaminated metabolites phenylpyruvate (PHP), phenyllactate (PHL) and phenylacetate (PHA) on sodium and potassium activated adenosinetriphosphatase (Na+, K+-ATPase) in synaptosomes from rat brain were investigated. At very low concentrations (5–10 M), PHE, PHL and PHA inhibited the activity, while PHP stimulated the activity. At intermediate concentrations (50–100 M), all compounds had no effect, but at higher (0.5–1.0 mM) concentrations they inhibited the enzyme activity. Thus all the compounds tested showed a biphasic effect on the enzyme activity. Hydroxylamine inhibited the Na+, K+-ATPase activity when present alone; simultaneous addition of hydroxylamine and PHE, however, eliminated the inhibitory effects of each other. Reversal of mutual inhibition also occurred in the presence of hydroxylamine and very low (5–10 M) concentrations of PHL or PHA. The inhibitory effects of PHE at all concentrations, and of PHL or PHA at low concentrations, were also eliminated in the presence of EGTA. The data indicate that inhibition of brain membrane Na+, K+-ATPase by PHE and by low concentrations of PHL and PHA may involve metal ions, but that the inhibition by high concentrations of these metabolites must occur by a different mechanism. Since Na+, K+-ATPase plays a central role in neuronal function, and the presence of excess PHE and its deaminated metabolites occurs in brain tissue under conditions of experimentally induced hyperphenylalaninemia and genetic phenylketonuria, the neurologic impairment in experimental and genetic PKU may in part be related to the deleterious effects of these compounds on brain ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号