首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of the hydrophobicity and the electrostatic charge of bacterial cell surfaces on the initial phase of adsorption to inorganic porous supports with SiO2 or Al2O3 as the main components was investigated. The physicochemical surface properties of various Gram-positive and Gram-negative bacteria were characterized by water contact angle and zeta-potential measurements. The influence of microbial charge on adsorption was investigated by varying the ionic strength of the suspending liquid. The amount of Escherichia coli cells adsorbed to Siran and B supports increased with increasing electrolyte concentration. The effect of cell surface hydrophobicity on the extent of adsorption was demonstrated at high ionic strength (0.15 m NaCl) where charge effects were reduced. The supports applied in this study promoted the adsorption of hydrophilic bacteria. Offprint requests to: H. Ziehr  相似文献   

2.
Block of K+ channels can be influenced by the ability of charged residues on the protein surface to accumulate cationic blocking ions to concentrations greater than those in bulk solution. We examined the ionic strength dependence of extracellular block of Shaker K+ channels by tetraethylammonium ions (TEA+) and by a trivalent quaternary ammonium ion, gallamine3+. Wild-type and mutant channels were expressed in Xenopus oocytes and currents recorded with the cut-open oocyte technique. Channel block by both compounds was substantially increased when the bathing electrolyte ionic strength was lowered, but with a much larger effect for trivalent gallamine. These data were quantitatively well described by a simple electrostatic model, accounting for accumulation of blocking ions near the pore of the channel by surface charges. The surface charge density of the wild-type channel consistent with the results was −0.1 e nm−2. Shaker channels with T449Y mutations have an increased affinity for both TEA and gallamine but the ionic strength dependence of block was described with the same surface charge density as wild-type channels. Much of the increased sensitivity of Shaker K+ channels to gallamine may be due to a larger local accumulation of the trivalent ion. The negative charge at position 431 contributes to the sensitivity of channels to TEA (MacKinnon & Yellen, 1990). A charge reversal mutation at this location had little effect on the ionic strength dependence of quaternary ammonium ion block, suggesting that the charge on this amino acid may directly affect binding affinity but not local ion accumulation. Received: 7 December 2000/Revised: 27 April 2001  相似文献   

3.
The static accessibility discrete charge algorithm for protein charge interactions is extended to the case of linear polyelectrolytes. In this model, the effective dielectric value between surface charge sites depends predominantly on the solvent ionic strength and the solvent accessibilities of the charge sites. This treatment accounts for the phenomena of specific ion binding in the context of a general electrostatic effect [Matthew and Richards (1982) Biochemistry 21 , 4989]. Specific ion sites are determined by locating areas of high electrostatic potential at the solvent interface of the macromolecule. At a given ionic strength the calculated potential at a site is taken to describe a binding constant and therefore the ion site occupancy. For a 20-base-pair fragment of B-DNA, net charge of ?40, 16 ion sites are indicated in the minor groove. The partial occupancy of each site increases from 0.2 to 0.5 as the ionic strength is increased from 0.01 to 0.50. Over the same range of ionic strength, the electrostatic free energy of this charge array is calculated to change from +0.6 to ?0.05 kcal/bp. Parallel behavior is predicted for A- and Z-DNA charge geometries. The most stable configuration, based on electrostatic criteria, at high ionic strength (I = 0.1–0.5) is that of Z-DNA. In this range, the ratio of “bound” sodium to phosphate is predicted to be less than 0.4.  相似文献   

4.
The surface charge of Tritrichomonas foetus was evaluated by means of the binding of colloidal iron hydroxide particles at pH 1.8 and cationized ferritin particles at pH 7.2 to the cell surface, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility (EPM), of cells suspended in solutions of different ionic strength and pH. At pH 7.2, T. foetus has a negative surface charge with a mean EPM of ?1.03 μmμs?1μV?1μcm. At lower pH, there is a decrease in the negative surface charge with an isoelectric point at pH 1.2. At higher pH (> 9.0), there is an increase in the surface charge reaching an EPM of ?2.5 μmμs?1μV?1μcm. These results indicate that the surface of T. foetus contains both negatively and positively charged dissociating groups. Binding of colloidal iron hydroxide and cationized ferritin particles throughout the cell surface of the protozoon was observed. Treatment of T. foetus with neuraminidase or trypsin reduced significantly the EPM of the cells. Enzyme-treated cells recovered their normal EPM when incubated for 6 h in fresh culture medium by a process that is inhibited by puromycin.  相似文献   

5.
The three-dimensional Poisson–Boltzmann equation for the distribution of counterion charge density around double-helical DNA has been solved for solutions of .01M, .10M, and .20M monovalent salt. The polymers, poly[d(CpGp)] and poly[d(m5CpGp)], were studied in the B- and the Z-conformations. The effect of methylation on the relative stabilities of these conformers in solutions of different ionic strengths is known to favor the Z-form. Accumulation of charge density around the B- and the Z-conformers is compared in detail. The relative electrostatic stabilities of the B- and Z-conformers in .01M, .10M, and .20M solutions are compared and discussed in terms of the ion–DNA interactions and the self-energy of the structured ionic environment. The ion–DNA interaction energies, termed “phosphate screening,” monotonically decrease with ionic strength and are consistent with a B-to-Z conformation change induced in either polymer by increased electrolyte concentration. However, these calculated energies alone do not account for the fact that the ionic strength at the midpoint of the transition of the methylated polymer is substantially lower than that of its unmethylated analogues. The phosphate screening effect is counterbalanced by changes in the self-energy required for the creation of the structured counterion environment. This self-energy of the electrolyte environment monotonically increases with ionic strength. Methylation-induced shifts in the overall conformational equilibria depend on the relative changes of these competing effects. Increasing salt concentration is calcualted to favor the Z-conformer. The effect of methylation, lowering the ionic strength of the transition midpoint, is proposed to originate in minor structural changes in the Z-form of the polymer, making the groove more accessible to counterions in the G(3′ – 5′)C region. This allows a redistribution of counterion density and a lowering of the self-energy of the ionic environment, conferring added stability to the Z-conformation, as indicated by calculations of relative entropies. The experimentally observed temperature dependence of the B-to-Z transition, however, cannot be explained without assuming the release of bound water. Maps of the calculated three-dimensional structure at the counterion distribution near the surface of these molecules in both the B- and the Z-forms are also presented.  相似文献   

6.
Microbial adhesion at the oil-water interface is a subject of both basic interest (e.g., as a technique for the measurement of hydrophobicity) and applied interest (e.g., for use in two-phase oil-water mouthwashes for the desorption of oral microorganisms). In general, surfactants inhibit microbial adhesion to oils and other hydrophobic surfaces. In the present study, we demonstrated that the cationic surfactant cetylpyridinium chloride (CPC) significantly enhanced microbial adhesion to hexadecane and various oils, as well as to the solid hydrophobic surface polystyrene. CPC increased adhesion to hexadecane of Escherichia coli, Candida albicans and Acinetobacter calcoaceticus MR-481 and of expectorated oral bacteria from near 0% to over 90%. The CPC concentration required for optimal enhancement of adhesion was a function of the initial cell density. This phenomenon was inhibited by high salt concentrations and, in the case of E. coli, by a low pH. CPC-pretreated cells were able to bind to hexadecane, but CPC-pretreated hexadecane was unable to bind untreated cells. Another cationic, surface-active antimicrobial agent, chlorhexidine gluconate, was similarly able to promote microbial adhesion to hexadecane. The results suggest that (i) CPC enhances microbial adhesion to hexadecane by binding via electrostatic interactions at the cell surface, thus diminishing surface charge and increasing cell surface hydrophobicity, and (ii) this phenomenon may have applications in oral formulations and in the use of hydrocarbon droplets as a support for cell immobilization.  相似文献   

7.
The effect of monorhamnolipid (monoRL) on the degradation of n-hexadecane by Candida tropicalis was investigated in this study. The concentration of hexadecane, cell growth, cell surface hydrophobicity (CSH), cell surface zeta potential (CSZP), and FT-IR spectra of cellular envelope were tested to determine the mechanisms. MonoRL at the initial concentrations of 11.4, 19, and 38 mg/l improved the degradation of hexadecane, and 19 mg/l was the best concentration. However, 114 mg/l monoRL suppressed the biodegradation probably because of the reduced bioavailability of hexadecane caused by the micelles. The presence of monoRL changed the cell surface properties, which was demonstrated by the increased CSH, the increased CSZP, and the changed FT-IR spectra of cellular envelope at 680 and 620 cm−1. The changes of cell surface properties may be a reason for the enhanced biodegradation of hexadecane by the yeast. The results indicate the potential application of monoRL in the bioremediation of hydrocarbons.  相似文献   

8.
Quasielastic light scattering and electrophoretic light scattering experiments were performed on chicken erythrocyte polynucleosome solutions at various temperatures and ionic strengths. The apparent diffusion coefficient, Dapp, was found to depend on the scattering vector K. In general, Dapp can be described as a damped oscillatory function of K in the ionic strength range of 10 to 60 mM and over the temperature range of 10 to 40°C. Electrophoretic light scattering studies on total digest chromatin samples indicate the apparent charge on the polynucleosomes increases as the ionic strength is lowered from 10 to 1 mM. These data are interpreted in terms of fluctuations in the surface charge distribution of the polyion and subsequent inducement of an asymmetric distribution of small ions about the polyion. These fluctuation components lead to the formation of “clusters” of polyions.  相似文献   

9.
A multiparticle computer model of plastocyanin-cytochrome f complex formation in the thylakoid lumen has been designed, which takes into account the electrostatic interactions of proteins and membrane. The Poisson-Boltzmann formalism was used to determine the electrostatic potentials of the electron carrier proteins and the thylakoid membrane at different ionic strengths. The membrane electrostatic field was shown to influence plastocyanin diffusion and interaction with cytochrome f. The rate constants for plastocyanin-cytochrome f complex formation were calculated as a function of ionic strength and membrane surface charge.  相似文献   

10.
The fragmentation of human erythrocytes heated in a range of ionic environments has been examined by video microscopy, , the average number of surface wave crests growing on the cell rim during fragmentation by membrane externalization, andI, the percentage of cells internalizing membrane, were scored.The membrane diffusion potential was altered experimentally on decreasing the extracellular chloride concentration by substituting either membrane-impermeant sorbitol or Na gluconate for some NaCl. The external-membrane-face surface potential was altered either by surface charge depletion or by ionic strength changes. The dependence of morphological change on diffusion potential at constant cell volume and surface potentials was established over a 34-mV change in diffusion potential. The rate constants for morphological change with charge depletion at different diffusion potentials are largely independent of the diffusion potential. A l.O-mV increase in diffusion potential has an effect on morphological change of comparable magnitude to that of a 1.0-mV decrease in the modulus of the negative surface potential. When the diffusion potential increased on decreasing both the extracellular diffusible ion concentration and extracellular ionic strength, the effect on cell morphology of increasing the modulus of the surface potential was overcome by the effects of the diffusion potential change.  相似文献   

11.
The partition of hexadecane to the cell surface of Candida tropicalis was measured by incubating heat-inactivated cells with hexadecane-1-14C on a gyratory shaker. The free hexadecane was separated by centrifuging the cells through a 15% sucrose solution, and the partitioned hexadecane was quantified by scintillation spectrometry of the samples from the resulting cell sediment. Heat-inactivated cells did not take up hexadecane as determined by a membrane filtration technique involving organic solvent washing. The partitioning was a time-dependent process. The velocity increased by increasing the shake rate of te shaker. At 360 rpm and with baffled flasks, saturation of the cell surface with hexadecane was obtained after a 20 min incubation period. The amount of hexadecane partitioned depended on the initial hexadecane-to-cell concentration ratio. At a ratio of 5 μmol/mg cell protein the highest amount of hexadecane partitioned was measured at 2100 μmol/mg cell protein. At ratios higher than 6 μmol/mg cell protein the cells were no longer sedimentable by centrifugation. The partition of hexadecane to the cell surface was affected by removing the surface layer of the cell wall by Pronase treatment and by using detergents in the partition assay. Pronase treatment lowered the amount of hexadecane partitioned as a consequence of the removal of the lipophilic layer of the cell surface. Detergents influence the partition coefficient and also lowered the amount of hexadecane partitioning to the cell surface. At a low shaking intensity (280 rpm, unbaffled flasks), after Pronase treatment, and in the presence of detergents he uptake of hexadecane by the cells was limited by the partitioning.  相似文献   

12.
13.
To investigate the effects of physiological properties on polycyclic aromatic compound (PAH) degradation, the surface tension and emulsification activities, and cell surface hydrophobicity of five PAH-degrading yeast isolates were compared to Saccharomyces cerevisiae from cultures grown with glucose, hexadecane, or naphthalene as carbon sources. The cell surface hydrophobicity values for the five yeast strains were significantly higher than for S. cerevisiae for all culture conditions, although these were highest with hexadecane and naphthalene. Strains with higher hydrophobicity showed higher rates of naphthalene and phenanthrene degradation, indicating that increased cell hydrophobicity might be an important strategy in PAH degradation for the five strains. Emulsification activities increased for all five yeast strains with naphthalene culturing, although no relationship existed between emulsification activity and PAH degradation rate. Surface tensions were not markedly reduced with naphthalene culturing.  相似文献   

14.
The roles of the extracellular biosurfactants produced by two bacterial strains, Pseudomonas aeruginosa GL1 and Rhodococcus equi Ou2, in hexadecane uptake and biodegradation were compared. For this purpose, cell hydrophobicity and production of glycolipidic biosurfactants were evaluated during bacterial growth on hexadecane, as well the effects of these biosurfactants on culture supernatants properties i.e., surface and interfacial tensions, and emulsification and pseudosolubilization capacities. The results showed that the role of biosurfactants was different in these two strains and was directly related to the hydrophobicity of the bacterial cells concerned. Extracellular biosurfactants produced by strain R. equi Ou2 had only a minor role in hexadecane degradation. Direct interfacial accession appeared to be the main mechanism for hexadecane uptake by the hydrophobic cells of strain R. equi Ou2. On the contrary, the biosurfactants produced by P. aeruginosa GL1 were required for growth on hexadecane, and their pseudosolubilization capacity rather than their emulsification capacity was involved in substrate degradation, allowing uptake from hexadecane micelles by the hydrophilic cells of this bacterium. The roles of biosurfactants thus differ widely among bacteria degrading hydrophobic compounds. J.-P. Vandecasteele—in retirement  相似文献   

15.
The hexadecane degradation of Acinetobacter oleivorans DR1 was evaluated with changes in temperature and ionic salt contents. Hexadecane degradation of strain DR1 was reduced markedly by the presence of sodium chloride (but not potassium chloride). High temperature (37°C) was also shown to inhibit the motility, biofilm formation, and hexadecane biodégradation. The biofilm formation of strain DR1 on the oil-water interface might prove to be a critical physiological feature for the degradation of hexadecane. The positive relationship between biofilm formation and hexadecane degradation could be observed at 30° C, but not at low temperatures (25°C). Alterations in cell hydrophobicity and EPS production by temperature and salts were not correlated with biofilm formation and hexadecane degradation. Our proteomic analyses have demonstrated that metabolic changes through the glyoxylate pathway are important for efficient degradation of hexadecane. Proteins involved in fatty acid metabolism, gluconeogenesis, and oxidative stress defense proteins appear to be highly expressed during biodégradation of hexadecane. These results suggested that biofilm formation and oxidative stress defense are important physiological responses for hexadecane degradation along with metabolic switch to glyoxylate pathway in strain DR1.  相似文献   

16.
Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired adhesion of cells to glass surfaces, but the adhesive properties of S. xylosus were regained within 30 minutes if DNase was not continuously present, implying a continuous release of eDNA in the culture. Removal of eDNA lowered the adhesion of S. xylosus to all surfaces chemistries tested, but not at all ionic strengths. No effect was seen on glass surfaces and carboxyl-functionalised surfaces at high ionic strength, and a reverse effect occurred on amine-functionalised surfaces at low ionic strength. However, eDNA promoted adhesion of cells to hydrophobic surfaces irrespective of the ionic strength. The adhesive properties of eDNA in mediating initial adhesion of S. xylosus is thus highly versatile, but also dependent on the physicochemical properties of the surface and ionic strength of the surrounding medium.  相似文献   

17.
The adhesion to cellulose fibres of a strain of Pseudomonas putida isolated from a paper machine was studied under different environmental conditions. The physicochemical properties of both P. putida cells and cellulose fibres were also determined to better understand the adhesion phenomenon. Adhesion was rapid (1 min) and increased with time, cell concentration and temperature (from 25 to 40°C), indicating that bacterial adhesion to cellulose fibres is essentially governed by a physicochemical process. The P. putida cell surface was negatively charged, as shown by electrophoretic mobility measurements, and was hydrophilic due to a strong electron-donor character, as shown by the microbial adhesion to solvents method. Cellulose fibres were shown to be hydrophilic by contact angle measurements using the capillary rise method. These results suggest the importance of Lewis acid-base interactions in the adhesion process. In various ionic solutions (NaCl, KCl, CaCl2 and MgCl2), adhesion increased with increasing ionic strength up to 10–100 mM, indicating that, at low ionic strength, electrostatic interactions were involved in the adhesion process. An increase in the C/N ratio of the growth medium (from 5 to 90) decreased adhesion but this could not be related to changes in physicochemical properties, suggesting that other factors may be involved. In practice, temperature, ionic strength and nitrogen concentration must be taken into consideration to reduce bacterial contamination in the paper industry.  相似文献   

18.
The relationship between the extracellular polymeric substances (EPS) and surface characteristics of Rhodopseudomonas acidophila in its different growth phases was established. The equilibrium constant of partition (K par) and the Gibbs energies of partition (△G par) between hexadecane and aqueous phases were also calculated according to the microbial adhesion to hexadecane (MATH) testing. The EPS content decreased with cultivation time at the logarithmic phase, but kept almost unchanged around 22.9 mg g−1 dry cell at the stationary phase. The EPS production of R. acidophila had a significant effect on its surface characteristics. The relative hydrophobicity and the K par values of R. acidophila before EPS extraction were both lower than those after extraction. Both EPS content and ratio of proteins to carbohydrates had a negative effect on the water contact angle of the bacterium, but had a positive influence on the bacterial surface free energy and its polar component. On the other hand, the EPS were not related with MATH% or the Gibbs energy of partition between hexadecane and aqueous phase.  相似文献   

19.
A “parallel plate” model describing the electrostatic potential energy of protein-protein interactions is presented that provides an analytical representation of the effect of ionic strength on a bimolecular rate constant. The model takes into account the asymmetric distribution of charge on the surface of the protein and localized charges at the site of electron transfer that are modeled as elements of a parallel plate condenser. Both monopolar and dipolar interactions are included. Examples of simple (monophasic) and complex (biphasic) ionic strength dependencies obtained from experiments with several electron transfer protein systems are presented, all of which can be accommodated by the model. The simple cases do not require the use of both monopolar and dipolar terms (i.e., they can be fit well by either alone). The biphasic dependencies can be fit only by using dipolar and monopolar terms of opposite sign, which is physically unreasonable for the molecules considered. Alternatively, the high ionic strength portion of the complex dependencies can be fit using either the monopolar term alone or the complete equation; this assumes a model in which such behavior is a consequence of electron transfer mechanisms involving changes in orientation or site of reaction as the ionic strength is varied. Based on these analyses, we conclude that the principal applications of the model presented here are to provide information about the structural properties of intermediate electron transfer complexes and to quantify comparisons between related proteins or site-specific mutants. We also conclude that the relative contributions of monopolar and dipolar effects to protein electron transfer kinetics cannot be evaluated from experimental data by present approximations.  相似文献   

20.
The binding of chlorpromazine · HCl at the human erythrocyte surface has been detected through its effect on cellular electrophoretic mobility. Incubation of erythrocytes (approx. 5 · 106/ml) in 23 μM chlorpromazine · HCl resulted in a reduction of negative electrophoretic mobility from the control value of ?1.11 ± 0.01 (μm · s?1)/(V · cm?1) to ?1.00 ± 0.02 (μm · s?1)/(V · cm?1) (pH 7.2, ionic strength 0.155). This mobility change was completely reversed when chlorpromazine · HCl was removed by centrifugal washing. Increasing the drug concentration to 70μM did not affect the mobility change, indicating saturation of the electrophoretically detectable drug binding sites over chlorpromazine · HCl concentration range studied here. The effect of the 23 μM chlorpromazine · HCl on electrophoretic mobility was also measured in isotonic media of reduced ionic strength. The drug-induced reduction in negative surface charge density was found to be independent of ionic strength over the range 0.155 (Debye length, 0.8 nm) to 0.00310 (Debye length, 5.7 nm).Fixation of erythrocytes with glutaraldehyde affected neither the normal electrophoretic mobility of discocytes nor the reduced electrophoretic mobility of chlorpromazine · HCl-induced stomatocytes. When these stomatocytes were first fixed with glutaraldehyde, then washed free of chlorpromazine · HCl, they retained the stomatocyte form while regaining a normal control electrophoretic mobility. Conversely, when discocytes fixed in that form were treated with chlorpromazine · HCl, they showed the same mobility change as did fixed or unfixed stomatocytes. The drug-induced mobility change is therefore independent of the shape change, but reflects a contribution to cellular surface charge density from the membrane-bound chlorpromazine · HCl molecules. From the charge reduction, it is estimated that about 106 chlorpromazine · HCl molecules are bound at the electrokinetic cell surface and occupy approximately 0.4% of the total surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号