首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Reduced positive selection in vector-borne RNA viruses   总被引:3,自引:0,他引:3  
  相似文献   

3.
This review presents an update on the sources and molecular basis of aeroallergens of plants, derived from pollen, seeds, leaf and stem detritus and their protein molecules. These aeroallergens are a natural component of the atmosphere, either because of their natural function or human activity. Pollen is a source of allergens within the 10–200 μm size range, and while most allergenic pollen types account for only 20–30% of total annual pollen catch, during their flowering season, they are usually the dominant type. Tree pollen commences the season in winter, with birch pollen counts in Scandinavia being the highest daily pollen counts yet reported and a major allergen, a 14-kDa protein, which is similar to pathogenesis-related proteins. Grass pollen follows in spring, and is unique as its two immunodominant allergens, a 35-kDa glycoprotein and 28–32-kDa protein, are in different cellular sites: the cytosol and surface of pollen grains; and in intracellular starch granules. The allergens at the pollen surface are not inhalable and can interact only with the eyes, nasal and oral cavities. Starch granules are released to the atmospheric aerosol when grains rupture in rainwater. These are a major source of allergen-containing micronic particles, which are important because they are inhalable. At the same time, allergen molecules are present in the aerosol, and these can bind to soot particles, and so be respired deep into the airways. The major Japanese cedar pollen allergen has been detected both within the pollen and in orbicules; particles less than 1 μm that line the anther cavity and can be released into the air when dehiscence occurs. Ragweed is the major cause of late summer hayfever in eastern North America, where its pollen accounts for up to 41% of the annual pollen catch. It is a major source of aeroallergens in both respirable and non-respirable size ranges. As a result of human activity, dusts derived from seeds and cereal grains during transport, storage and milling provide a source of micronic particles, containing potent allergens that can trigger allergic disease.  相似文献   

4.
Approaches to control vector-borne diseases rarely focus on the interface between vector and microbial pathogen, but strategies aimed at disrupting the interactions required for transmission may lead to reductions in disease spread. We tested if the vector transmission of the plant-pathogenic bacterium Xylella fastidiosa was affected by three groups of molecules: lectins, carbohydrates, and antibodies. Although not comprehensively characterized, it is known that X. fastidiosa adhesins bind to carbohydrates, and that these interactions are important for initial cell attachment to vectors, which is required for bacterial transmission from host to host. Lectins with affinity to substrates expected to occur on the cuticular surface of vectors colonized by X. fastidiosa, such as wheat germ agglutinin, resulted in statistically significant reductions in transmission rate, as did carbohydrates with N-acetylglucosamine residues. Presumably, lectins bound to receptors on the vector required for cell adhesion/colonization, while carbohydrate-saturated adhesins on X. fastidiosa's cell surface. Furthermore, antibodies against X. fastidiosa whole cells, gum, and afimbrial adhesins also resulted in transmission blockage. However, no treatment resulted in the complete abolishment of transmission, suggesting that this is a complex biological process. This work illustrates the potential to block the transmission of vector-borne pathogens without directly affecting either organism.  相似文献   

5.
6.
Genetic variation in AIDS viruses   总被引:52,自引:0,他引:52  
J M Coffin 《Cell》1986,46(1):1-4
  相似文献   

7.
8.
9.
10.
Despite the large population of stray dogs in Thailand, there is limited information on the prevalence of canine vector-borne diseases (CVBDs). In this study, a molecular survey was conducted to determine the prevalence of Babesia spp., Ehrlichia canis, Hepatozoon spp., Anaplasma platys and Mycoplasma spp. in dogs in Thailand. Of the 181 dog blood samples tested by PCR, 78/181 (43.1%) were found to be infected with one or more pathogens. The overall prevalence rates of Mycoplasma spp., Hepatozoon spp., Babesia spp., A. platys and E. canis infections were 19.9%, 18.8%, 9.4%, 4.4% and 3.9%, respectively. To the authors' knowledge, this is the first report of Mycoplasma infection in Thailand in dogs. The current findings are important for future surveillance of CVBDs and designing appropriate approaches for diagnosis and control for the diseases in Thailand.  相似文献   

11.
12.
Top 10 plant viruses in molecular plant pathology   总被引:4,自引:0,他引:4  
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.  相似文献   

13.
Green and senesced leaf nitrogen (N) and phosphorus (P) concentrations of different plant functional groups in savanna communities of Kruger National Park, South Africa were analyzed to determine if nutrient resorption was regulated by plant nutritional status and foliar N:P ratios. The N and P concentrations in green leaves and the N concentrations in senesced leaves differed significantly between the dominant plant functional groups in these savannas: fine-leaved trees, broad-leaved trees and grasses. However, all three functional groups reduced P to comparable and very low levels in senesced leaves, suggesting that P was tightly conserved in this tropical semi-arid savanna ecosystem. Across all functional groups, there was evidence for nutritional control of resorption in this system, with both N and P resorption efficiencies decreasing as green leaf nutrient concentrations increased. However, specific patterns of resorption and the functional relationships between nutrient concentrations in green and senesced leaves varied by nutrient and plant functional group. Functional relationships between N concentrations in green and senesced leaves were indistinguishable between the dominant groups, suggesting that variation in N resorption efficiency was largely the result of inter-life form differences in green leaf N concentrations. In contrast, observed differences in P resorption efficiencies between life forms appear to be the result of both differences in green leaf P concentrations as well as inherent differences between life forms in the fraction of green leaf P resorbed from senescing leaves. Our results indicate that foliar N:P ratios are poor predictors of resorption efficiency in this ecosystem, in contrast to N and P resorption proficiencies, which are more responsive to foliar N:P ratios.  相似文献   

14.
Host controlled variation in bacterial viruses   总被引:73,自引:22,他引:51       下载免费PDF全文
  相似文献   

15.
16.
Morphological plasticity in clonal plants has received wide attention because localized plastic changes in spacer length, branching intensity and branching angle may enable clonal plants to place ramets selectively in the more favourable microhabitats within a heterogeneous environment. These responses have been interpreted in terms of foraging behaviour. Studies of morphological plasticity in clonal plants are usually carried out with one or two genotypes of a species, or with material of unknown genetic origin. Based on the concept of phenotypic plasticity, it is argued that such studies do not reveal whether plasticity in a population can be modified by natural selection. In addition, responses are often evaluated at two environmental conditions only, which may underestimate plasticity. Hence, our information on the ecological and evolutionary significance of morphological plasticity in clonal plants is still very incomplete. Two examples are given to show that stolon internode and rhizome lengths may vary considerably within an individual plant. Only a minor part of this variation may be plastic, i.e. the variation is hardly changed by the environmental conditions to which the plants are subjected. Hence, non-plastic variation in clonal morphology may exceed the degree of morphological plasticity. The non-plastic variation seems to originate from species-specific patterns of stolon and rhizome development. Marked non-plastic variation may obscure the effects of morphological plasticity on the placement pattern of ramets in the field, suggesting that plasticity in clonal morphology may not be very effective in terms of foraging for favourable patches. Possible reasons for the low levels of plasticity of clonal spacers are discussed.  相似文献   

17.
T Iida 《Uirusu》1972,22(3):107-113
  相似文献   

18.
The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus. These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed.  相似文献   

19.
20.
The initial step in target cell infection by human, and the closely related simian immunodeficiency viruses (HIV and SIV, respectively) occurs with the binding of trimeric envelope glycoproteins (Env), composed of heterodimers of the viral transmembrane glycoprotein (gp41) and surface glycoprotein (gp120) to target T-cells. Knowledge of the molecular structure of trimeric Env on intact viruses is important both for understanding the molecular mechanisms underlying virus-cell interactions and for the design of effective immunogen-based vaccines to combat HIV/AIDS. Previous analyses of intact HIV-1 BaL virions have already resulted in structures of trimeric Env in unliganded and CD4-liganded states at ∼20 Å resolution. Here, we show that the molecular architectures of trimeric Env from SIVmneE11S, SIVmac239 and HIV-1 R3A strains are closely comparable to that previously determined for HIV-1 BaL, with the V1 and V2 variable loops located at the apex of the spike, close to the contact zone between virus and cell. The location of the V1/V2 loops in trimeric Env was definitively confirmed by structural analysis of HIV-1 R3A virions engineered to express Env with deletion of these loops. Strikingly, in SIV CP-MAC, a CD4-independent strain, trimeric Env is in a constitutively “open” conformation with gp120 trimers splayed out in a conformation similar to that seen for HIV-1 BaL Env when it is complexed with sCD4 and the CD4i antibody 17b. Our findings suggest a structural explanation for the molecular mechanism of CD4-independent viral entry and further establish that cryo-electron tomography can be used to discover distinct, functionally relevant quaternary structures of Env displayed on intact viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号