首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatty acid and glycerolipid biosynthesis from [14C]acetate by isolated pea root plastids is completely dependent on exogenously supplied ATP. CTP, GTP, and UTP are ineffective in supporting fatty acid biosynthesis, all resulting in <3% of the activity obtained with ATP. However, ADP alone or in combination with inorganic phosphate (Pi) or pyrophosphate (PPi) gave up to 28% of the ATP control activity, whereas AMP + PPi, PPi alone, or Pi alone were ineffective in promoting fatty acid biosynthesis. The components of the dihydroxyacetonephosphate (DHAP) shuttle (DHAP, oxaloacetate, and Pi), which promote intraplastidic ATP synthesis, restored 41% of the control ATP activity, whereas the omission of any of the shuttle components abolished this activity. When the DHAP shuttle components were supplemented with ADP, the rate of fatty acid biosynthesis was completely restored to that observed in the presence of ATP. Under the conditions of ADP + DHAP shuttle-driven fatty acid biosynthesis, exogenously supplied ATP gave only a 6% additional stimulation of activity. In general, variations in the energy source had only small effects on the proportions of radioactive fatty acids and glycerolipids synthesized. Most notably, higher amounts of radioactive oleic acid, free fatty acids, and diacylglycerol and lower amounts of phosphatidic acid were observed when ADP and/or the DHAP shuttle were substituted for ATP. The results presented here indicate that, although isolated pea root plastids readily utilize exogenously supplied ATP for fatty acid biosynthesis, these plastids can also synthesize sufficient ATP when provided with the appropriate cofactors.  相似文献   

2.
The glycerolipid composition of pea (Pisum sativum L.) root plastids and their capacity to synthesize glycerolipids from [UL-14C]glycerol-3-phosphate were determined. Pea root plastids primarily consist of monogalactosyldiacylglycerol, triacylglycerol, phosphatidylcholine, digalactosyldiacylglycerol, and diacylglycerol. Maximum rates of total glycerolipid biosynthesis were obtained in the presence of 2.4 mM glycerol-3-phosphate, 15 mM KHCO3, 0.2 mM sodium-acetate, 0.5 mM each of NADH and NADPH, 0.05 mM coenzyme A, 2 mM MgCl2, 1 mM ATP, 0.1 M Bis-Tris propane (pH 7.5), and 0.31 M sorbitol. Glycerolipid biosynthesis was completely dependent on exogenously supplied ATP, coenzyme A, and a divalent cation, whereas the remaining cofactors improved their activity from 1.3- to 2.4-fold. Radioactivity from glycerol-3-phosphate was recovered predominantly in phosphatidic acid, phosphatidylglycerol, diacylglycerol, and triacylglycerol with lesser amounts in phosphatidylcholine and monoacylglycerol. The proportions of the various radiolabeled lipids that accumulated were dependent on the pH and the concentration of ATP and glycerol-3-phosphate. The data presented indicate that pea root plastids can synthesize almost all of their component glycerolipids and that glycerolipid biosynthesis is tightly coupled to de novo fatty acid biosynthesis. pH and the availability of ATP may have important roles in the regulation of lipid biosynthesis at the levels of phosphatidic acid phosphatase and in the reactions that are involved in phosphatidylglycerol and triacylglycerol biosynthesis.  相似文献   

3.
The capacity of the triose-phosphate shuttle and various combinations of glycolytic intermediates to substitute for the ATP requirement for fatty-acid and glycerolipid biosynthesis in pea (Pisum sativum L.) root plastids was assessed. In all cases, ATP gave the greatest rates of fatty-acid and glycerolipid biosynthesis. Rates of up to 66 and 27 nmol·(mg protein)–1·h–1 were observed for the incorporation of acetate and glycerol-3-phosphate into lipids in the presence of ATP. In the absence of exogenously supplied ATP, the triose-phosphate shuttle gave up to 44 and 33% of the ATP-control activity in promoting fatty-acid and glycerolipid biosynthesis from acetate and glycerol-3-phosphate, respectively. The optimum shuttle components were 2 mM dihydroxyacetonephosphate (DHAP), 2 mM oxaloacetic acid and 4 mM inorganic phosphate (referred to as the DHAP shuttle). Glyceraldehyde-3-phosphate, as a shuttle triose, was approximately 82% as effective as DHAP in promoting fatty-acid synthesis while 2-phosphoglycerate, 3-phosphoglycerate, and phosphoenolpyruvate were only 27–37% as effective as DHAP. When glycolytic intermediates were used as energy sources for fatty-acid synthesis, in the absence of both exogenously supplied ATP and the triose-phosphate shuttle, phosphoenolpyruvate, 2-phosphoglycerate, fructose-6-phosphate and glucose-6-phosphate each gave 48%, 17%, 23% and 17%, respectively, of the ATP-control activity. Other triose phosphates tested were much less effective in promoting fatty-acid synthesis. When exogenously supplied ATP was supplemented with the DHAP shuttle or glycolytic intermediates, the complete shuttle increased fatty-acid biosynthesis by 37% while DHAP alone resulted in 24% stimulation. Glucose-6-phosphate, fructose-6-phosphate and glycerol-3-phosphate similarly all improved the rates of fatty-acid synthesis by 20–30%. In contrast, 3-phosphoglycerate, 2-phosphoglycerate and phosphoenolpyruvate all inhibited fatty-acid synthesis by approximately 10% each. The addition of the DHAP shuttle and glycolytic intermediates with or without exogenously supplied ATP caused an increase in the proportion of radioactive oleate and a decrease in the proportion of radioactive palmitate synthesized. The use of these alternative energy sources resulted in higher amounts of free fatty acids and triacylglycerol, and lower amounts of diacylglycerol and phosphatidic acid. The data presented here indicate that ATP is superior in promoting in-vitro fatty-acid biosynthesis in pea root plastids; however, both the triose-phosphate shuttle and glycolytic metabolism can produce some of the ATP required for fatty-acid biosynthesis in these plastids.Abbreviations DHAP dihydroxyacetonephosphate - Fru6P fructose-6-phosphate - G3P glycerol-3-phosphate - Glc6P glucose-6-phosphate - OAA oxaloacetate - PEP phosphoenolpyruvate - 2PGA 2-phosphoglycerate - 3PGA 3-phosphoglycerate - 3PGalde glyceraldehyde-3-phosphate This research was supported by grants from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

4.
A preliminary analysis of Fatty Acid synthesis in pea roots   总被引:3,自引:3,他引:0       下载免费PDF全文
Subcellular fractions from pea (Pisum sativum L.) roots have been prepared by differential centrifugation techniques. Greater than 50% of the recovered plastids can be isolated by centrifugation at 500g for 5 minutes. Plastids of this fraction are largely free from mitochondrial and microsomal contamination as judged by marker enzyme analysis. De novo fatty acid biosynthesis in pea roots occurs in the plastids. Isolated pea root plastids are capable of fatty acid synthesis from acetate at rates up to 4.3 nanomoles per hour per milligram protein. ATP, bicarbonate, and either Mg2+ or Mn2+ are all absolutely required for activity. Coenzyme A at 0.5 millimolar improved activity by 60%. Reduced nucleotides were not essential but activity was greatest in the presence of 0.5 millimolar of both NADH and NADPH. The addition of 0.5 millimolar glycerol-3-phosphate increased activity by 25%. The in vitro and in vivo products of fatty acid synthesis from acetate were primarily palmitate, stearate, and oleate, the proportions of which were dependent on experimental treatments. Fatty acids synthesized by pea root plastids were recovered in primarily phosphatidic acid and diacylglycerol or as water soluble derivatives and the free acids. Lesser amounts were found in phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and monogalactosyldiacylglycerol.  相似文献   

5.
Fan Kang  Stephen Rawsthorne 《Planta》1996,199(2):321-327
The aim of this work was to investigate the partitioning of imported glucose 6-phosphate (Glc6P) to starch and fatty acids, and to CO2 via the oxidative pentose phosphate pathway (OPPP) in plastids isolated from developing embryos of oilseed rape (Brassica napus L.). The ability of the isolated plastids to utilize concurrently supplied substrates and the effects of these substrate combinations on the Glc6P partitioning were also assessed. The relative fluxes of carbon from Glc6P to starch, fatty acids, and to CO2 via the OPPP were close to 2∶1∶1 when Glc6P was supplied alone. Under these conditions NADPH generated via the OPPP was greater than that required by the concurrent rate of fatty acid synthesis. Fatty acid synthesis was unaffected by the presence or absence of exogenous NADH and/or NADPH and the requirement of fatty acid synthesis for reducing power is therefore met entirely by intraplastidial metabolism. When Glc6P was supplied in the presence of either pyruvate or pyruvate and acetate, the total flux from these metabolites to fatty acids was up to threefold greater than that from either Glc6P or pyruvate when they were supplied singly. In these experiments there was little competition between Glc6P and pyruvate in fatty acid synthesis and the flux to starch was unchanged. This implies that the starch and fatty acid biosynthesis pathways did not compete for the exogenously supplied ATP on which they were strongly dependent. When Glc6P and pyruvate were provided together, the NADPH generated by the OPPP pathway was less than that required by the concurrent rate of fatty acid synthesis. This suggests that the metabolism of exogenous Glc6P via the OPPP can contribute to the NADPH demand created during fatty acid synthesis but it also indicates that other intraplastidial sources of reducing power must be available under the in-vitro conditions used.  相似文献   

6.
Fatty acid biosynthesis from Na[1-14C]acetate was characterized in plastids isolated from primary roots of 7-day-old germinating pea (Pisum sativum L.) seeds. Fatty acid synthesis was maximum at 82 nanomoles per hour per milligram protein in the presence of 200 micromolar acetate, 0.5 millimolar each of NADH, NADPH, and coenzyme A, 6 millimolar each of ATP and MgCl2, 1 millimolar each of MnCl2 and glycerol-3-phosphate, 15 millimolar KHCO3, 0.31 molar sucrose, and 0.1 molar Bis-Tris-propane, pH 8.0, incubated at 35°C. At the standard incubation temperature of 25°C, fatty acid synthesis was essentially linear for up to 6 hours with 80 to 120 micrograms per milliliter plastid protein. ATP and coenzyme A were absolute requirements, whereas divalent cations, potassium bicarbonate, and reduced nucleotides all variously improved activity two- to 10-fold. Mg2+ and NADH were the preferred cation and nucleotide, respectively. Glycerol-3-phosphate had little effect, whereas dithiothreitol and detergents generally inhibited the incorporation of [14C]acetate into fatty acids. On the average, the principal radioactive products of fatty acid biosynthesis were approximately 39% palmitic, 9% stearic, and 52% oleic acid. The proportions of these fatty acids synthesized depended on the experimental conditions.  相似文献   

7.
Paramecium requires oleate for growth. The phospholipids of the ciliate contain high concentrations of palmitate and 18- and 20-carbon unsaturated fatty acids. We previously showed that radiolabeled oleate is desaturated and elongated to provide these 18- and 20-carbon unsaturated acids. We now report on saturated fatty acid (SFA) metabolism in Paramecium. Radiolabeled palmitate and stearate were incorporated directly into cellular phospholipids with little or no desaturation and/or elongation. Radiolabeled acetate, malonate, pyruvate, citrate, or glucose added to cultures were not incorporated into cellular phospholipid fatty acids indicating that these exogenously supplied putative precursors were not utilized for fatty acid synthesis by Paramecium. Radiolabel from octanoate or hexanoate appeared in fatty acyl groups of phospholipids, possibly by partial beta-oxidation and reincorporation of the label. Under oleate-free conditions in which cultures do not grow, radiolabel from these shorter chain SFA were beta-oxidized and preferentially used for the formation of arachidonate, the major end-product of fatty acid synthesis in Paramecium. Cerulenin inhibited culture growth apparently by inhibiting de novo fatty acid synthesis. Cerulenin-treated cells did not incorporate radioactivity from [1-14C]octanoate into esterified palmitate. However, total saponifiable phospholipid fatty acids, including SFA, per cell increased under these conditions.  相似文献   

8.
Plastids isolated from developing leaves and embryos of oilseed rape (Brassica napus L.) were incubated with substrates in the light or the dark, with or without exogenous ATP. Incorporation of HCO-3, and carbon from a range of substrates into fatty acids and/or starch by leaf chloroplasts was absolutely light-dependent and was unaffected by provision of ATP. Incorporation of HCO-3 into fatty acids and/or starch by embryo plastids was also light-dependent. However, the light-dependent rates attained, when expressed on a comparable basis, were less than 32% of those from Glc6P (plus ATP), which was the most effective substrate for starch and fatty acid synthesis. In the light alone the rates of carbon incorporation from Glc6P, pyruvate and acetate into fatty acids, and from Glc6P into starch by embryo plastids were less than 27% of the respective ATP-dependent (dark) rates. Light had no effect on these ATP-dependent rates of synthesis by embryo plastids. While transporter activities for both glucose and Glc6P were present in embryo plastids, leaf chloroplasts did not have the latter activity. It is concluded that light at in vivo levels can contribute energy to carbon metabolism in embryo plastids. However, this contribution is likely to be small and these plastids are therefore largely dependent upon interaction with the cytosol for the ATP, reducing power and carbon precursors that are required for maximal rates of starch and fatty acid synthesis.  相似文献   

9.
Fatty acid biosynthesis by isolated plastids has been examined in relation to chloroplast development and differentiation in leaves of maize plants grown in light for 7 days. Biosynthesis of fatty acids from acetate by proplastids prepared from the basal regions of the leaf was low and mainly palmitate was synthesized. The greatly increased utilization of acetate for fatty acid biosynthesis as the plastids increased in size was due to an increased synthesis of oleate. The maximum synthesis of total fatty acids and monoenoic fatty acids was obtained in chloroplasts prepared from leaf tissue 6–8 cm from the base of the plant where granal formation was most active. Fully-developed chloroplasts prepared from distal regions of the leaf were less active in fatty acid biosynthesis. Maize chloroplasts failed to synthesize fatty acids when isolated by methods commonly used to prepare active spinach chloroplasts. The method of isolation which included a density gradient gave a high proportion of Class I chloroplasts from maize leaves and incorporated up to about 10% of the acetate used. Biosynthesis of unsaturated fatty acids, especially with chloroplasts prepared from the most mature tissue, was increased by the addition of both mitochondrial and microsomal fractions. Increases in polyunsaturated fatty acids were also obtained but the proportions in the newly-synthesized fatty acids were well below the endogenous levels. Monoenoic synthesis was greatly stimulated by increasing the pH in the range 7·0–8·0 and also the highest proportions of unsaturated fatty acids were obtained at short incubation times.  相似文献   

10.
Leucoplasts were isolated from the endosperm of developing castor (Ricinis communis) endosperm using a discontinuous Percoll gradient. The rate of fatty acid synthesis was highest when malate was the precursor, at 155 nanomoles acetyl-CoA equivalents per milligram protein per hour. Pyruvate and acetate also were precursors of fatty acid synthesis, but the rates were approximately 4.5 and 120 times less, respectively, than when malate was the precursor. When acetate was supplied to leucoplasts, exogenous ATP, NADH, and NADPH were required to obtain maximal rates of fatty acid synthesis. In contrast, the incorporation of malate and pyruvate into fatty acids did not require a supply of exogenous reductant. Further, the incorporation of radiolabel into fatty acids by leucoplasts supplied with radiolabeled malate, pyruvate, or acetate was reduced upon coincubation with cold pyruvate or malate. The data suggest that malate and pyruvate may be good in vivo sources of carbon for fatty acid synthesis and that, in these preparations, leucoplast fatty acid synthesis may be limited by activity at or downstream of the acetyl-CoA carboxylase reaction.  相似文献   

11.
Lipid biosynthesis by isolated plastids from greening pea, Pisum sativum   总被引:1,自引:0,他引:1  
Isolated etioplasts from 8-day-old dark-grown pea seedlings incorporated [1-(14)C]acetate into lipid at a relatively low rate. Plastids from seedlings that had been illuminated for at least 2 hr showed an enhanced incorporation provided the plastids were illuminated during incubation with the labeled acetate. Dark incubation or the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) decreased the acetate-incorporating activity of the developing chloroplasts to the level observed with etioplasts. Light had a marked effect on the type of fatty acid into which acetate was incorporated by the developing chloroplasts. Unsaturated fatty acids (mostly oleic acid) accounted for 60-80% of the incorporated label if the plastids were illuminated, but in the dark or in the presence of DCMU the unsaturated acids accounted for only 0-15% of the label incorporated into lipid. The effect of ATP on incorporation was dependent on the maturity of the chloroplasts; mature pea chloroplasts were inhibited by ATP, whereas in developing plastids there was a slight stimulation by ATP. Inhibition of acetate incorporation into lipid by DCMU appears to be due to inhibition of noncyclic phosphorylation. Incorporation was restored by reduced 2,3,5,6-tetramethylphenylenediamine, which restored phosphorylation, but not by reduced N,N,N',N'-tetramethylphenylenediamine.  相似文献   

12.
Inhibition of Proteus mirabilis growth by cerulenin, a specific inhibitor of fatty acid biosynthesis, was reversed by exogenously supplied fatty acid mixtures containing oleic acid and palmitic or pentadecanoic acids. The growth rate of the cells treated with cerulenin in the presence of the fatty acid mixtures was slower, however, than that of untreated cells, and their lipopolysaccharide content was decreased by 30-50%, resulting in an increased sensitivity of the organisms to rifamycin and vancomycin. Polyacrylamide gel electrophoresis of the lipopolysaccharide fraction from cerulenin-treated cells revealed that of the two P. mirabilis lipopolysaccharide types, the relative amount of the higher molecular weight lipopolysaccharide was reduced from 50% to 30% of the total lipopolysaccharide. Fatty acid analysis of the phospholipid and lipopolysaccharide fractions from cells grown with cerulenin, pentadecanoate, and oleate revealed that over 60% of the native even-numbered fatty acids of the phospholipid fraction was substituted by the odd-numbered fatty acid, while no incorporation of either the pentadecanoate or oleate could be demonstrated in the lipid A moiety of the lipopolysaccharide. The only change in the lipid A observed was an increase in the content of 3-hydroxymyristic acid accompanied by a decrease in the nonhydroxylated fatty acids, supporting the highly conserved nature of this molecule.  相似文献   

13.
[1-14C]Oleic and [1-14C]linoleic acids were rapidly desaturated when incubated with maize leaves from 8-day-old plants and the labeled fatty acids, and their desaturation products, were rapidly incorporated into glycerolipids. Oleic acid was desaturated to linoleate at the rate of 0.7 nmol/100 mg tissue/h and further desaturated to linolenate at about one-third this rate. The rates of linolenate formation were similar when either oleic acid or linoleic acid was the substrate although there was a 2-h lag period when oleic acid was substrate. When radioactive oleic, linoleic, and linolenic acids were substrates, phosphatidylcholine was the most extensively labeled glycerolipid followed by monogalactosyldiacylglycerol. The relative rates of incorporation of label into individual glycerolipids are consistent with a movement of labeled fatty acids from phosphatidylcholine to monogalactosyldiacylglycerol and then to diagalactosyldiacylglycerol. The rates of labeling of phosphatidylcholine oleate and of phosphatidylcholine linoleate are consistent with a precursor-product relationship in that there was a delayed accumulation of phosphatidylcholine linoleate relative to that of phosphatidylcholine oleate and phosphatidylcholine linoleate continued to accumulate while phosphatidylcholine oleate declined. Linoleate formed from oleate was widely distributed in glycerolipids but neither phosphatidylcholine linolenate nor linolenate-containing diacylglycerol was detected at short and intermediate incubation times when either oleic or linoleic acid was substrate. The kinetics of incorporation of linoleate and linolenate into monogalactosyldiacylglycerol suggest a transfer of linoleate from phosphatidylcholine. The initial rate of accumulation of labeled linolenate in monogalactosyldiacylglycerol was very similar to the rate of desaturation of linoleate and it is suggested that desaturation of linoleate occurs while associated with monogalactosyl-diacylglycerol.  相似文献   

14.
Glioma C62B cells, incubated for 18 h with either an unsaturated (arachidonate or oleate) or saturated (palmitate or stearate) radioactive fatty acid, incorporated label into most species of cellular glycerolipids. Treatment of prelabeled C62B cells with 1 mM acetylcholine (ACh) resulted in an accumulation of radioactive phosphatidate irrespective of which fatty acid was used as a label. However, only in cells prelabeled with unsaturated fatty acids were increases in radioactive fatty acids observed. When exogenous radioactive arachidonate was added to C62B cells in the presence of 1 mM ACh, there was a rapid, selective, and transiently enhanced incorporation of label (several times the control) into phosphatidylinositol (PI). The ACh-enhanced incorporation into PI was not preceded by enhanced incorporation of label into sn-1,2-diacylglycerol or phosphatidate but was followed by an increased labeling of polyphosphoinositides. Similarly, incorporation of oleate into PI was enhanced by ACh. In contrast, ACh did not enhance the incorporation of label into any glycerolipids when saturated fatty acids were used. C62B cells, incubated with [2-3H]inositol for 18 h selectively incorporated label into phosphoinositides. Stimulation of [2-3H]inositol-labeled cells with 1 mM ACh in the presence of 25 mM LiCl resulted in a rapid accumulation of radioactive inositol phosphates (mono-, bis-, and trisphosphates) and glycerophosphoinositol. The accumulation of inositol trisphosphates preceded that of inositol monophosphate and glycerophosphoinositol, while the accumulation of glycerophosphoinositol paralleled the time required for the ACh-stimulated esterification of arachidonate. These results suggest that ACh stimulates activation of a phospholipase C in C62B cells and release of 1,4,5-inositol trisphosphate. There is subsequent activation of phospholipase A2, which in turn liberates arachidonate from PI. The resulting lyso PI is either rapidly reesterified with unsaturated fatty acid to resynthesize PI, or further deacylated to yield glycerophosphoinositol.  相似文献   

15.
Halofenate-free acid (HFA) inhibited the growth of Saccharomyces cerevisiae by 50% at a concentration of 0.34 mm. This inhibitory effect was prevented by addition of either oleate or acetate, but not by pyruvate. When cell growth was supported by oleate, HFA inhibited the incorporation of radioactive carbon from glucose-U-(14)C or pyruvate-2-(14)C into fatty acids and sterols. The incorporation of radioactive carbon into fatty acids and sterols from acetate-2-(14)C was unaffected by the compound. When cell growth was supported by either oleate or acetate, HFA inhibited the conversion of pyruvate-1-(14)C to (14)CO(2). These results suggest that HFA inhibits the conversion of pyruvate to acetate in yeast. Partially purified yeast pyruvate dehydrogenase was inhibited 50% by 5.5 mm HFA; however, the concentration required for 50% inhibition was considerably reduced when the enzyme was preincubated with the compound at room temperature. In a similar manner, the hypolipidemic agent clofibrate-free acid inhibited the growth of yeast by 50% at 3.0 mm. This inhibition was also prevented by acetate and not by pyruvate. In addition, clofibrate-free acid inhibited partially purified pyruvate dehydrogenase by 50% at a concentration of 37.0 mm.  相似文献   

16.
Abstract. H14CO3 was not incorporated into fatty acids by isolated pea leaf chloroplasts, which, therefore, do not possess a self-contained pathway for the synthesis of fatty acids from early intermediates of the Calvin cycle. Citrate, pyruvate, acetate and L-acetylcarnitine were all shown to act as sources of acetyl groups for fatty acid synthesis by pea leaf chloroplasts. L-acetylcarnitine was the best substrate, being incorporated into fatty acids at rates that were at least five-fold higher than those achieved with the other substrates. Citrate was incorporated into fatty acids at the lowest rate, followed by pyruvate, with acetate being incorporated at the second highest rate of all. When the isolated chloroplasts were ruptured, an inhibition of L-acetylcarnitine incorporation into fatty acids was noted, whilst acetate incorporation remained unaffected. L-acetylcarnitine also increased the ratio of monoenoic: saturated fatty acids synthesized, compared with a 1:1 ratio observed when citrate, pyruvate and acetate were supplied as substrates. It is suggested that L-carnitine and carnitine acyltransferases play a central role in plant acyl CoA metabolism by facilitating the transfer of activated acyl groups across membranes (acyl CoA barriers).  相似文献   

17.
The uncoupling-like effect of fatty acids [ Scholz , R., Schwabe , U., and Soboll , S. (1984) Eur. J. Biochem. 141, 223-230] was further substantiated in experiments with perfused rat livers by two ways: firstly the kinetics of changes in metabolic rates (oxygen consumption, ketogenesis, fatty acid oxidation) were analysed; secondly subcellular contents of adenine nucleotides and pH gradients across the mitochondrial membrane were determined following fractionation of freeze-fixed and dried tissues in non-aqueous solvents. The following results were obtained. The relaxation kinetics of the increase in oxygen consumption following fatty acid infusion revealed two components, a rapid one with a half-time around 10 s and a slow one with a half-time of more than 100 s. The rapid component was similar to the kinetics of fatty acid oxidation (ketogenesis and 14CO2 production from labelled fatty acids) whereas the half-time of the slow component was in the range of half-times observed with the increase in oxygen consumption following addition of carbonylcyanide p-trifluoromethoxyphenylhydrazone. In the presence of fatty acids, the cytosolic ATP concentrations and ATP/ADP ratios decreased, whereas the corresponding parameters for the mitochondrial space were either increased (oleate) or decreased (octanoate). The effects of oleate were dependent on the albumin concentrations in the perfusate. The normally large difference between cytosolic and mitochondrial ATP/ADP ratios became smaller. Similar observations were obtained with uncoupling agents. The pH gradient across the mitochondrial membrane as calculated from the subcellular distribution of 5,5 dimethyl[2-14C]oxazolidine-2,4-dione was inversed following the addition of both carbonylcyanide p-trifluoromethoxyphenylhydrazone and fatty acids, i.e. the mitochondrial matrix became more acidic than the cytosol. The pH gradient was not affected when oleate was added in the presence of high albumin concentrations. The data support the hypothesis that the increase in hepatic oxygen consumption due to octanoate or oleate is, in part, caused by a mechanism similar to uncoupling of oxidative phosphorylation. This mechanism seems not to be an artifact of isolated systems; it may be of physiological importance for processes in which reducing equivalents are removed independently of the ATP demand of the hepatocyte.  相似文献   

18.
The pyruvate dehydrogenase complex (PDC) and acetyl-CoA carboxylase(ACC, EC 6.4.1.2 [EC] ) have been characterized in pea root plastids.PDC activity was optimum in the presence of 1.0 mM pyruvate,1.5 mM NAD+ 0.1 mM CoA, 0.1 mM TPP, 5 mM MgCl2, 3.0 mM cysteine-HCl,and 0.1 M Tricine (pH 8.0) and represents approximately 47%of the total cellular activity. ACC activity was greatest inthe presence of 1.0 mM acetyl-CoA, 4 mM NaHCO3 mM ATP, 10 mMMgCl2, 2.5 mM dithiothreitol, and 100 mM Tricine (pH 8.0). Bothenzymes were stimulated by reduced sulphydryl reagents and inhibitedby sulphydryl inhibitors. ACC was also inhibited by malonyl-CoAwhile PDC was inhibited by both malonyl-CoA and NADH. Both enzymeswere stimulated by DHAP and UDP-galactose while ACC was alsostimulated by PEP and F1,6P. Palmitic acid and oleic acid bothinhibited ACC, but had essentially no effect on PDC. Palmitoyl-CoAinhibited both enzymes while PA and Lyso-PA inhibited PDC, butstimulated ACC. The results presented support the hypothesisthat PDC and ACC function in a co-ordinated fashion to promoteglycolytic carbon flow to fatty acid biosynthesis in pea rootplastids. Key words: Pisum sativum L., pyruvate dehydrogenase complex, acetyl-CoA carboxylase, roots, non-photosynthetic plastids  相似文献   

19.
20.
Isolated rat hepatocytes, previously shown to display enhanced rates of fatty acid biosynthesis upon a brief exposure to insulin, were used to study acute effects of this hormone on other aspects of hepatic fatty acid metabolism. Insulin activates the incorporation of exogenously added fatty acids into glycerolipids and depresses their utilization in the formation of ketone bodies. Insulin increases both the activity of acetyl-CoA carboxylase and the cellular content of malonyl-CoA. Evidence is presented that malonyl-CoA plays an important role in the insulin-mediated control of both ketogenesis and de novo fatty acid synthesis. All metabolic parameters studied are affected by glucagon in a manner opposite to that of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号