首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central and peripheral factors were studied in fatigue of submaximal intermittent isometric contractions of the human quadriceps and soleus muscles. Subjects made repeated 6 s, 50% maximal voluntary contractions (MVC) followed by 4 s rest until the limit of endurance (Tlim). Periodically, a fatigue test was performed. This included a brief MVC, either a single shock or 8 pulses at 50 Hz during a rest period and a shock superimposed on a target force voluntary contraction. At Tlim, the MVC force had declined by 50%, usually in parallel with the force from stimulation at 50 Hz. The twitches superimposed on the target forces declined more rapidly, disappearing entirely at Tlim. In similar experiments on adductor pollicis, no reduction of the evoked M wave was seen. The results suggest that, during fatigue of quadriceps and adductor pollicis induced by this protocol, no central fatigue was apparent, but some was seen in soleus. Thus the reduced force-generating capacity could result mainly or entirely from failure of the muscle contractile apparatus.  相似文献   

2.
目的:探讨肌肉疲劳过程中sEMG功率谱变化与H 的关系以及可能存在的其它影响因素.方法:利用肌肉进行疲劳收缩结束后,短时间内肌肉pH值尚无明显改变的特性,观察恢复期30 s内s EMG功率谱的变化规律.八名男性受试者,以肱二头肌为目标肌肉,负荷强度为60%MVC,静态持续负荷至疲劳点后,在恢复期以同样负荷分别观察2 s、4 s、6 s、8 s、10 s、20 s、30 s时的sEMG信号特征.结果:肱二头肌在以60%MVC静态疲劳负荷过程中MPF呈线性下降.在疲劳负荷后的恢复期,MPF恢复极其迅速,运动结束后仅2 s,MPF已恢复到整个下降范围的26.5%;至30 s,MPF已恢复到整个下降范围的87.7%.结论:由[H ]增加引起的肌纤维动作电位传导速度下降不是决定sEMG功率谱左移的唯一因素,提示sEMG功率谱左移可能与神经源性的中枢机制的作用有关.  相似文献   

3.
The purpose of this study was to determine (i) if decomposition-based quantitative electromyography (DQEMG) could detect changes in motor unit potential (MUP) morphology and motor unit (MU) firing pattern statistics associated with muscle fatigue, (ii) if any detected changes are correlated with surface electromyographic (SEMG) signs of fatigue, and (iii) if significant fatigue-dependent changes are repeatable within individuals. Mean MU firing rates and the morphology of MUPs detected using needle and surface electrodes during constant-torque isometric contractions held until exhaustion were investigated in the brachioradialis (BR) muscle in 10 healthy volunteers (mean age=28.6 yr, SD+/-3.9). Time dependant changes were investigated using an analysis of variance with normalized time as a main effect. Partial correlation coefficients were computed using a repeated measures analysis of covariance to determine if changes in MU firing rates, needle-detected MUPs and surface-detected MUPs (SMUPs) were related to changes in SEMG signal amplitude and frequency parameters. Intraclass correlation coefficients (ICCs) were used to determine the within-subject repeatability of changes in MU firing rates, and MUP and SMUP parameters. Significant decreases in mean MU firing rates were found along with significant increases in various duration and area related parameters in both MUPs and SMUPs across the fatiguing contraction. The SEMG signal demonstrated the expected changes with fatigue: an increase in amplitude and a decrease in frequency content. SEMG amplitude was significantly positively correlated with SMUP peak-to-peak voltage (r=0.85, p<0.05), and SMUP area (r=0.86, p<0.05). Mean power frequency was significantly negatively correlated with SMUP negative peak duration (r=-0.74, p<0.05). The significant time-dependent changes were reliably observed (ICCs were 0.94 for MUP peak to peak amplitude, 0.97 for MUP area and 0.95 for MUP area to amplitude ratio, 0.95 for SMUP peak-to-peak voltage, 0.83 for SMUP area, 0.99 for SMUP negative peak amplitude and 0.88 for SMUP negative peak area). The decreases in mean MU firing rates measured along with the increases in amplitude, duration and area parameters of MUPs and SMUPs and their partial correlation with SEMG amplitude during submaximal fatiguing contractions of the BR, suggest that recruitment is a main cause of increased SEMG amplitude parameters with fatigue. We conclude that DQEMG can be effectively and reliably used to detect changes in physiological characteristics of MUs that accompany fatigue.  相似文献   

4.
Seven male subjects exercised for 1, 3, 10 and 20 min on a cycle ergometer at 20, 60 and 80% VO2max, and then held to fatigue a sustained contraction of the quadriceps at 40% maximal voluntary contraction in order to determine what influence various levels of dynamic exercise would have on isometric function of the same group of muscles. Muscle temperature was measured before and within 15 s of the completion of the cycling to determine whether changes in muscle temperature might influence the subsequent isometric performance. Isometric endurance was shorter as the severity of the cycling increased beyond 20% VO2max, and as the duration of cycling increased up to 10 min. There were discrete linear relationships between muscle temperature and isometric endurance associated with cycling at 60% and 80% VO2max. There was a direct inverse relationship between quadriceps strength after cycling and muscle temperature, yet a significant reduction in strength occurred only after cycling at 80% VO2max. These results suggest that the encroachment on endurance and strength are controlled by different mechanisms. The heart rates during the isometric contractions were dependent on the preceding rhythmic exercise and decreased after exercise at 60 or 80% VO2max. In contrast, the blood pressure always increased during the isometric contractions, reaching similar values at the point of fatigue, regardless of the severity of the previous rhythmic exercise. These data provide additional evidence that separate mechanisms control changes in heart rate and blood pressure.  相似文献   

5.
Tension-type headache (TTH) is a prototypical disorder in which muscular factors play a key role in the pathogenesis. This study was designed to understand muscular dysfunction in patients with episodic (ETTH) and chronic TTH (CTTH) using surface electromyography analysis (SEMG). Women with frequent ETTH (n = 14), CTTH (n = 14) and age-matched controls (n = 13) were recruited. SEMG data were recorded from the masseter, sternocleidomastoid, and upper trapezius muscles during maximum voluntary contraction and sustained voluntary isometric clenching, the neck flexion endurance test and shoulder elevation for 30 s. The root mean square (RMS) and median frequency (MDF) of the SEMG signal were measured throughout the test. The fatigue index, which is the MDF slope during sustained muscle contraction, decreased significantly faster in the ETTH and CTTH groups compared with that in the control (p < 0.05). The mean absolute RMS and relative percentage values at the initial and final period during sustained isometric contraction decreased significantly in the CTTH group (p < 0.05). Furthermore, headache clinical parameters (frequency and duration) were negatively correlated with the amplitude values (p < 0.05). A different muscle firing pattern or some muscle modifications in patients with CTTH may reflect reorganization of the motor-control strategy.  相似文献   

6.
In this paper, we propose a force estimation model to compute the handgrip force from SEMG signal during fatiguing muscle contraction tasks. The appropriate frequency range was analyzed using various combinations of a wavelet scale, and the highest accuracy was achieved at a range from 242 to 365 Hz. After that, eight healthy individuals performed a series of static (70%, 50%, 30%, and 20% MVC) and dynamic (0–50% MVC) muscle contraction tasks to evaluate the performance of this technique in comparison with that of former method using the Root Mean Square of the SEMG signal. Both methods had comparable results at the beginning of the experiments, before the onset of muscle fatigue. However, differences were clearly observed as the degree of muscle fatigue began to increase toward the endurance time. Under this condition, the estimated handgrip force using the proposed method improved from 17% to 134% for static contraction tasks and 40% for dynamic contraction tasks. This study overcomes the limitation of the former method during fatiguing muscle contraction tasks and, therefore, unlocks the potential of utilizing the SEMG signal as an indirect force estimation method for various applications.  相似文献   

7.
This paper studies the time-dependent power spectral density (PSD) estimation of nonstationary surface electromyography (SEMG) signals and its application to fatigue analysis during isometric muscle contraction. The conventional time-dependent PSD estimation methods exhibit large variabilities in estimating the instantaneous SEMG parameters so that they often fail to identify the changing patterns of short-period SEMG signals and gauge the extent of fatigue in specific muscle groups. To address this problem, a time-varying autoregressive (TVAR) model is proposed in this paper to describe the SEMG signal, and then the recursive least-squares (RLS) and basis function expansion (BFE) methods are used to estimate the model coefficients and the time-dependent PSD. The instantaneous parameters extracted from the PSD estimation are evaluated and compared in terms of reliability, accuracy, and complexity. Experimental results on synthesized and real SEMG data show that the proposed TVAR-model-based PSD estimators can achieve more stable and precise instantaneous parameter estimation than conventional methods.  相似文献   

8.
Myoelectric fatigue typically manifests as variations in the amplitude and spectrum of surface electromyograms (EMGs). Interestingly, these variations seem to be represented locally in different muscles. In this study, we ask whether such a regional distribution of myoelectric fatigue extends to the medial gastrocnemius (MG) muscle. If the MG muscle is activated locally during fatiguing contractions, or if the most fatigable MG fibers are located at distinct muscle regions, then, the myoelectric manifestations of MG fatigue are expected to appear locally in a grid of surface electrodes. With a matrix of surface electrodes (7 × 15 single-differential EMGs) we show that myoelectric fatigue, indeed, manifests regionally in the MG muscle of 12 subjects, who exerted intermittent, fatiguing plantar flections at 50% of their maximal effort. Contrary to the root mean square amplitude, the median frequency of surface EMGs varied consistently across subjects throughout the plantar flections (P = 0.002). On average, changes in EMG spectrum were represented at 78–93 (interquartile interval) out of the 105 channels in the matrix, though with different degrees across channels. For all participants, about 29% of the channels detected significantly greater reductions in median frequency when compared to all channels in the matrix (P < 0.003). Strikingly, these channels were not sparsely distributed; they rather occupied localized skin regions across subjects. Physiologically, our results suggest that, during sub-maximal fatiguing tasks, myoelectric manifestations of MG fatigue are represented in spatially localized muscle regions. Technically, the possibility of studying myoelectric fatigue in the MG muscle appears to depend on the electrode location.  相似文献   

9.
The time course of muscle fiber conduction velocity and surface myoelectric signal spectral (mean and median frequency of the power spectrum) and amplitude (average rectified and root-mean-square value) parameters was studied in 20 experiments on the tibialis anterior muscle of 10 healthy human subjects during sustained isometric voluntary or electrically elicited contractions. Voluntary contractions at 20% maximal voluntary contraction (MVC) and at 80% MVC with duration of 20 s were performed at the beginning of each experiment. Tetanic electrical stimulation was then applied to the main muscle motor point for 20 s with surface electrodes at five stimulation frequencies (20, 25, 30, 35, and 40 Hz). All subjects showed myoelectric manifestations of muscle fatigue consisting of negative trends of spectral variables and conduction velocity and positive trends of amplitude variables. The main findings of this work are 1) myoelectric signal variables obtained from electrically elicited contractions show fluctuations smaller than those observed in voluntary contractions, 2) spectral variables are more sensitive to fatigue than conduction velocity and the average rectified value is more sensitive to fatigue than the root-mean-square value, 3) conduction velocity is not the only physiological factor affecting spectral variables, and 4) contractions elicited at supramaximal stimulation and frequencies greater than 30 Hz demonstrate myoelectric manifestations of muscle fatigue greater than those observed at 80% MVC sustained for the same time.  相似文献   

10.
Innovative applications of non-linear time series analysis have recently been used to investigate physiological phenomena. In this study, we investigated the feasibility of using the correlation integral to monitor the localized muscle fatigue process in the biceps brachii during sustained maximal efforts. The subjects performed isometric maximum contractions until failure in elbow flexion (90 degrees from neutral). The median and the 70th percentile frequency of the Surface electromyography (SEMG) power spectrum, the integrated SEMG, and the Correlation Integral (CI) were evaluated during the trials. The linear correlation between these variables and the elbow torque production was used to quantify the ability of a parameter to follow the fatiguing process. The CI had the highest linear correlation with torque (0.77 (0.12SD)), while the spectral indices correlations with torque were much lower. The decreasing trend of the torque production was followed by the spectral indices for only the beginning part of the contraction, while the CI increased sharply after the torque production fell to about 0.60 of the MVC. This suggests that the CI is sensitive to different changes of the SEMG signal during fatigue than the spectral variables.  相似文献   

11.
Fatigue in the legs is a problem experienced by skiers. It has been suggested that optimal orthotics may reduce muscle fatigue for a given movement task by minimising muscle activity (Med. Sci. Sports Exerc. 31 (1999) S421). The aims were to determine whether EMG would provide an independent method of analysing myoelectric fatigue in the vastus lateralis (VL) during a skier’s squat and whether orthotics could affect this fatigue response. Six skiers performed skier’s squats for as long as possible with no orthotic, low volume orthotics and high volume orthotics in their ski boots. Bipolar, active surface electrodes recorded EMG activity in the VL throughout each squat. Results for the EMG median frequency showed a significant shift in the power density spectrum towards the lower frequencies (P<0.05) at the end of the contraction, suggesting that myoelectric fatigue was occurring and was measurable using EMG. All conditions displayed a significant decrease in median frequency at the end of the contraction (P=0.001). The high volume orthotic showed a significant reduction in myoelectric fatigue, however, there was no difference in the duration of squats across the three conditions (P>0.05). Subjective and objective findings support the use of the high volume foot orthotic for skiers.  相似文献   

12.
This study investigated whether pain-induced changes in cervical muscle activation affect myoelectric manifestations of cervical muscle fatigue. Surface EMG signals were detected from the sternocleidomastoid and splenius capitis muscles bilaterally from 14 healthy subjects during 20-s cervical flexion contractions at 25% of the maximal force. Measurements were performed before and after the injection of 0.5 ml of hypertonic (painful) or isotonic (control) saline into either the sternocleidomastoid or splenius capitis in two experimental sessions. EMG average rectified value and mean power spectral frequency were estimated throughout the sustained contraction. Sternocleidomastoid or splenius capitis muscle pain resulted in lower sternocleidomastoid EMG average rectified value on the side of pain (P < 0.01). However, changes over time of sternocleidomastoid EMG average rectified value and mean frequency (myoelectric manifestations of fatigue) during sustained flexion were not changed during muscle pain. These results demonstrate that pain-induced modifications of cervical muscle activity do not change myoelectric manifestations of fatigue. This finding has implications for interpreting the mechanisms underlying greater cervical muscle fatigue in people with neck pain disorders.  相似文献   

13.
This study monitored the effects of a short-term elbow flexor training program on surface electromyographic (SEMG) spike activity. The experimental paradigm consisted of three test sessions separated by 2-week intervals. At the beginning of each session, participants (N=13) performed five maximal effort isometric contractions of the elbow flexors to serve as baseline. After 5 min of rest, the participants then engaged in a 30-trial isometric fatigue protocol during which maximal elbow flexion torque was measured with a load-cell, and the maximal rate of change in the torque (dtau/dt(max)) was obtained from the differentiated torque-time curve. Bipolar electrodes were used to monitor the SEMG spike activity of the biceps brachii. Mean spike amplitude (MSA) and mean spike frequency (MSF) were calculated for the torque development and constant-torque phases of the isometric contraction, termed Segment 1 and Segment 2, respectively. Mean power frequency (MPF) was also calculated for Segment 2. The five baseline contractions of the second and third sessions were compared with those of the first session and analyzed for training-related changes. Training increased dtau/dt(max) but failed to change maximal elbow flexion torque or MSA. However, there was an increase in the MSF during the torque development phase of the contraction (Segment 1). Both MSA and MSF were greatest during the constant-torque phase of the isometric contraction (Segment 2). There was a strong linear correlation (r=0.90, P<0.05) between MSF and MPF during (Segment 2). We hypothesize that the increase in dtau/dt(max) is due to enhanced motor-unit rate-coding. The demonstrated correlation between MSF and MPF measures will allow investigators to use spike analysis to examine the frequency content of the SEMG signal under non-stationary conditions.  相似文献   

14.
Five men performed submaximal isometric, concentric or eccentric contractions until exhaustion with the left arm elbow flexors at respectively 50%, 40% and 40% of the prefatigued maximal voluntary contraction force (MVC). Subsequently, and at regular intervals, the surface electromyogram (EMG) during 30-s isometric test contractions at 40% of the prefatigued MVC and the muscle performance parameters (MVC and the endurance time of an isometric endurance test at 40% prefatigued MVC) were recorded. Large differences in the surface EMG response were found after isometric or concentric exercise on the one hand and eccentric exercise on the other. Eccentric exercise evoked in two of the three EMG parameters [the EMG amplitude (root mean square) and the rate of shift of the EMG mean power frequency (MPF)] the greatest (P less than 0.001) and longest lasting (up to 7 days) response. The EMG response after isometric or concentric exercise was smaller and of shorter duration (1-2 days). The third EMG parameter, the initial MPF, had already returned to its prefatigued value at the time of the first measurement, 0.75 h after exercise. The responses of EMG amplitude and of rate of MPF shift were similar to the responses observed in the muscle performance parameters (MVC and the endurance time). Complaints of muscle soreness were most frequent and severe after the eccentric contractions. Thus, eccentric exercise evoked the greatest and longest lasting response both in the surface EMG signal and in the muscle performance parameters.  相似文献   

15.
16.
The purpose of this study was to examine the time-of-day effects on muscle fatigue and recovery process following an isometric fatiguing contraction. Sixteen male subjects were tested at two times (06:00h and 18:00h) and were requested to perform a sustained submaximal contraction of the elbow flexors, consisting in maintaining 40% of their absolute strength as long as they could. Isometric maximal voluntary contractions (MVC) were performed before (Pre), immediately after (Post), and up to 10min after the endurance task. Endurance time, peak torque (PT) and electromyographic (EMG) activities of the biceps brachii and triceps brachii were recorded and analysed. Results showed that under Pre-test conditions, PT developed at 18:00h was higher than at 06:00h. No time-of-day effect appears for the endurance time and EMG activities during the test. No time-of-day effect was observed on either MVC or EMG recovery. From the results of this study, it seems that both muscle fatigue and recovery process are not time-of-day dependent. We conclude that circadian rhythm of the force do not influence the evaluation of muscle capacities during a submaximal exercise corresponding at 40% of MVC.  相似文献   

17.
Constant-force isometric muscle training is useful for increasing the maximal strength , rehabilitation and work-fatigue assessment. Earlier studies have shown that muscle fatigue characteristics can be used for evaluating muscle endurance limit. Study Objective: To predict muscle endurance time during isometric task using frequency spectrum characteristics of surface electromyography signals along with analysis of frequency spectrum shape and scale during fatigue accumulation. Method: Thirteen subjects performed isometric lateral raise at 60% MVC of deltoid (lateral) till endurance limit. Time windowed sEMG frequency spectrum was modelled using 2-parameter distributions namely Gamma and Weibull for spectrum analysis and endurance prediction. Results: Gamma distribution provided better spectrum fitting (P < 0.001) than Weibull distribution. Spectrum Distribution demonstrated no change in shape but shifted towards lower frequency with increase of magnitude at characteristic mode frequency. Support Vector Regression based algorithm was developed for endurance time estimation using features derived from fitted frequency spectrum. Time taken till endurance limit for acquired dataset 38.53 ± 17.33 s (Mean ± Standard Deviation) was predicted with error of 0.029 ± 4.19 s . R-square: 0.956, training and test sets RMSE was calculated as 3.96 and 4.29 s respectively. The application of the algorithm suggested that model required 70% of sEMG signal from maximum time of endurance for high prediction accuracy. Conclusion: Endurance Limit prediction algorithm was developed for quantification of endurance time for optimizing isometric training and rehabilitation. Our method could help personalize and change conventional training method of same weight and duration for all subjects with optimized training parameters, based upon individual sEMG activity.  相似文献   

18.
The aim of this study was to determine the effect of the time after spinal cord injury (less than and greater than 10 months) on the mechanical and electrophysiological characteristics of muscle fatigue of the paralyzed electrically stimulated quadriceps muscle. Morphologically and histochemically, a relationship was observed between muscle fatigue and the delay from injury, revealing a critical period of enzymatic turning and a maximum peak of atrophy around the 10th month after the injury, followed by a long-term stabilization. Knee-torque output and M-wave variables (amplitude, latency, duration, and root mean square, RMS) of two muscular heads of the quadriceps were recorded in 19 paraplegic patients during a 120-s isometric contraction. The fatiguing muscle contraction was elicited by supramaximal continuous 20-Hz electrical stimulation. Compared to the chronic group, the acutely paralyzed group showed a greater resistance to fatigue (amount and rate of force decline, P < or = 0.01), smaller alterations of the M-wave amplitude and RMS, and a limited decrease of the muscle fiber conduction velocity (P < 0.05). Mechanical and electrophysiological changes during fatigue provided a clear functional support of the transformation of skeletal muscle under the lesion and of the existence of a critical period of muscular turn. In conclusion, when considering the artificial restoration of motor function, the evolution of the endurance and force-generating capabilities of the muscle actuator must be taken into account, particularly when tasks require important safety conditions (e.g., standing and walking).  相似文献   

19.
The purpose of the present study was to investigate if the intramuscular pressure generated during an isometric muscle contraction is important for the appearance of EMG spectral changes accompanying localized muscular fatigue. The EMG and intramuscular pressure of the left biceps brachii in eight volunteers were recorded during standardized isometric contractions by means of intramuscular wire electrodes and infusion catheters, respectively. Spectral changes were elicited by a submaximal contraction and the intramuscular pressure at which the induced spectral changes were able to recover was determined. It was found that significant recovery was possible only if the intramuscular pressure dropped below a level of about 2.7 kPa (20 mm Hg). It is concluded that the intramuscular pressure during a sustained isometric contraction is relevant for the generation of fatigue induced spectral changes, and that measurement of the intramuscular pressure makes possible predetermination of whether or not an isometric muscle contraction is liable to result in localized muscular fatigue.  相似文献   

20.
AIM: This study examined the electromyographic (EMG) activity of knee extensor agonists and a knee extensor antagonist muscle during fatiguing isometric extensions across a range of force levels. METHODS: Five female subjects performed isometric knee extensions at 25%, 50%, 75% and 100% of their maximal voluntary contraction (MVC) with the knee flexed to 75 degrees. Surface EMG (SEMG) was recorded with bipolar electrodes from the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF) and biceps femoris (BF) and the root-mean-squared (RMS) amplitude and the percentage frequency compression of these recordings were calculated. Commonality and cross talk between recordings were also examined. RESULTS: Cross talk between recordings was deemed negligible despite significant levels of commonality between the agonist and antagonist SEMG, which was attributed to common drive. SEMG RMS amplitude increased significantly for all muscles during the 25%, 50%, 75% MVC knee extensions until task failure, and decreased significantly for 100% MVC. The frequency spectrum of the SEMG compressed significantly for all muscles and % MVC levels. The VM, VL and BF SEMG recordings responded similarly to fatigue. The RF's frequency spectrum compressed to a significantly higher degree. CONCLUSIONS: The VM, VL, RF, and BF fatigue in parallel, with high similarity between VM, VL and BF, giving support to the concept of a shared agonist-antagonist motoneuron pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号