首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein evolution has occurred by successive fixation of individual mutations. The probability of fixation depends on the fitness of the mutation, and the arising variant can be deleterious, neutral, or beneficial. Despite its relevance, only few studies have estimated the distribution of fitness effects caused by random single mutations on protein function. The human immunodeficiency virus type 1 (HIV-1) protease was chosen as a model protein to quantify protein's tolerability to random single mutations. After determining the enzymatic activity of 107 single random mutants, we found that 86% of single mutations were deleterious for the enzyme catalytic efficiency and 54% lethal. Only 2% of the mutations significantly increased the catalytic efficiency of the enzyme. These data demonstrate the vulnerability of HIV-1 protease to single random mutations. When a second random mutagenesis library was constructed from an HIV-1 protease carrying a highly deleterious single mutation (D30N), a higher proportion of mutations with neutral or beneficial effect were found, 26% and 9%, respectively. Importantly, antagonist epistasis was observed between deleterious mutations. In particular, the mutation N88D, lethal for the wild-type protease, restored the wild-type catalytic efficiency when combined with the highly deleterious mutation D30N. The low tolerability to single random substitutions shown here for the wild-type HIV-1 protease contrasts with its in vivo ability to generate an adaptive variation. Thus, the antagonist epistasis between deleterious or lethal mutations may be responsible for increasing the protein mutational robustness and evolvability.  相似文献   

2.
J Greenwald  V Le  S L Butler  F D Bushman  S Choe 《Biochemistry》1999,38(28):8892-8898
Replication of HIV-1 requires the covalent integration of the viral cDNA into the host chromosomal DNA directed by the virus-encoded integrase protein. Here we explore the importance of a protein surface loop near the integrase active site using protein engineering and X-ray crystallography. We have redetermined the structure of the integrase catalytic domain (residues 50-212) using an independent phase set at 1.7 A resolution. The structure extends helix alpha4 on its N-terminal side (residues 149-154), thus defining the position of the three conserved active site residues. Evident in this and in previous structures is a conformationally flexible loop composed of residues 141-148. To probe the role of flexibility in this loop, we replaced Gly 140 and Gly 149, residues that appear to act as conformational hinges, with Ala residues. X-ray structures of the catalytic domain mutants G149A and G140A/G149A show further rigidity of alpha4 and the adjoining loop. Activity assays in vitro revealed that these mutants are impaired in catalysis. The DNA binding affinity, however, is minimally affected by these mutants as assayed by UV cross-linking. We propose that the conformational flexibility of this active site loop is important for a postbinding catalytic step.  相似文献   

3.
Al-Mawsawi LQ  Sechi M  Neamati N 《FEBS letters》2007,581(6):1151-1156
HIV-1 integrase (IN) mediates the insertion of viral cDNA into the cell genome, a vital process for replication. This step is catalyzed by two separate DNA reaction events, termed 3'-processing and strand transfer. Here, we show that six inhibitors from five structurally different classes of compounds display a selectivity shift towards preferential strand transfer inhibition over the 3'-processing activity of IN when a single serine is substituted at position C130. Even though IN utilizes the same active site for both reactions, this finding suggests a distinct conformational dissimilarity in the mechanistic details of each IN catalytic event.  相似文献   

4.
5.
HIV-1 integrase (IN) catalyzes the integration of the proviral DNA into the cellular genome. The catalytic triad D64, D116 and E152 of HIV-1 IN is involved in the reaction mechanism and the DNA binding. Since the integration and substrate binding processes are not yet exactly known, we studied the role of amino acids localized in the catalytic site. We focused our interest on the V151E152S153 region. We generated random mutations inside this domain and selected mutated active INs by using the IN-induced yeast lethality assay. In vitro analysis of the selected enzymes showed that the IN nuclease activities (specific 3′-processing and non-sequence-specific endonuclease), the integration and disintegration reactions and the binding of the various DNA substrates were affected differently. Our results support the hypothesis that the three reactions may involve different DNA binding sites, enzyme conformations or mechanisms. We also show that the V151E152S153 region involvement in the integration reaction is more important than for the 3′-processing activity and can be involved in the recognition of DNA. The IN mutants may lead to the development of new tools for studying the integration reaction, and could serve as the basis for the discovery of integration-specific inhibitors.  相似文献   

6.
HIV-1 integrase, an essential enzyme for retroviral replication, is a validated target for anti-HIV therapy development. The catalytic core domain of integrase (IN–CCD) is capable of catalyzing disintegration reaction. In this work, a hairpin-shaped disintegration substrate was designed and validated by enzyme-linked immunosorbent assay; a molecular beacon-based assay was developed for disintegration reaction of IN–CCD. Results showed that the disintegration substrate could be recognized and catalyzed by IN–CCD, and the disintegration reaction can be monitored according to the increase of fluorescent signal. The assay can be applied to real-time detection of disintegration with advantages of simplicity, high sensitivity, and excellent specificity.  相似文献   

7.
8.
9.
A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.  相似文献   

10.
Addition of a nitrogen source to yeast (Saccharomyces cerevisiae) cells starved for nitrogen on a glucose-containing medium triggers activation of protein kinase A (PKA) targets through a pathway that requires for sustained activation both a fermentable carbon source and a complete growth medium (fermentable growth medium induced or FGM pathway). Trehalase is activated, trehalose and glycogen content as well as heat resistance drop rapidly, STRE-controlled genes are repressed, and ribosomal protein genes are induced. We show that the rapid effect of amino acids on these targets specifically requires the general amino acid permease Gap1. In the gap1Delta strain, transport of high concentrations of l-citrulline occurs at a high rate but without activation of trehalase. Metabolism of the amino acids is not required. Point mutants in Gap1 with reduced or deficient transport also showed reduced or deficient signalling. However, two mutations, S391A and S397A, were identified with a differential effect on transport and signalling for l-glutamate and l-citrulline. Specific truncations of the C-terminus of Gap1 (e.g. last 14 or 26 amino acids) did not reduce transport activity but caused the same phenotype as in strains with constitutively high PKA activity also during growth with ammonium as sole nitrogen source. The overactive PKA phenotype was abolished by mutations in the Tpk1 or Tpk2 catalytic subunits. We conclude that Gap1 acts as an amino acid sensor for rapid activation of the FGM signalling pathway which controls the PKA targets, that transport through Gap1 is connected to signalling and that specific truncations of the C-terminus result in permanently activating Gap1 alleles.  相似文献   

11.
12.
13.
Fructose-1,6-bisphosphatase from the yeast Saccharomyces cerevisiae has properties similar to other gluconeogenic fructose-1,6-bisphosphatases, but an unusual characteristic of the yeast enzyme is that it can be phosphorylated in vitro by cAMP-dependent protein kinase. Phosphorylation also occurs in vivo, presumably as part of a signalling mechanism for the enzyme's degradation. To probe the structural basis for the phosphorylation of yeast fructose-1,6-bisphosphatase, we have developed an improved procedure for the purification of the enzyme and then performed sequence studies with the in vitro-phosphorylated protein as well as with tryptic and chymotryptic peptides containing the phosphorylation site. As a result of these studies, we have determined that yeast fructose-1,6-bisphosphatase has the following 24-residue NH2-terminal amino acid sequence: Pro-Thr-Leu-Val-Asn-Gly-Pro-Arg-Arg-Asp-Ser-Thr-Glu-Gly- Phe-Asp-Thr-Asp-Ile-Ile-Thr-Leu-Pro-Arg. The site of phosphorylation is located at Ser-11 in the above sequence. The amino acid sequence around the site of phosphorylation contains the sequence - Arg-Arg-X-Ser- associated with many of the better substrates of cAMP-dependent protein kinase. The sequence of residues 15-24 above is highly homologous with the sequence of residues 6-15 of pig kidney fructose-1,6-bisphosphatase, showing 7 out of 10 residues in identical positions. The yeast enzyme, however, has a dissimilar NH2-terminal region which extends beyond the NH2 terminus of mammalian fructose-1,6-bisphosphatases and contains a unique phosphorylation site.  相似文献   

14.
Lee MC  Deng J  Briggs JM  Duan Y 《Biophysical journal》2005,88(5):3133-3146
HIV-1 integrase is one of the three essential enzymes required for viral replication and has great potential as a novel target for anti-HIV drugs. Although tremendous efforts have been devoted to understanding this protein, the conformation of the catalytic core domain around the active site, particularly the catalytic loop overhanging the active site, is still not well characterized by experimental methods due to its high degree of flexibility. Recent studies have suggested that this conformational dynamics is directly correlated with enzymatic activity, but the details of this dynamics is not known. In this study, we conducted a series of extended-time molecular dynamics simulations and locally enhanced sampling simulations of the wild-type and three loop hinge mutants to investigate the conformational dynamics of the core domain. A combined total of >480 ns of simulation data was collected which allowed us to study the conformational changes that were not possible to observe in the previously reported short-time molecular dynamics simulations. Among the main findings are a major conformational change (>20 A) in the catalytic loop, which revealed a gatinglike dynamics, and a transient intraloop structure, which provided a rationale for the mutational effects of several residues on the loop including Q(148), P(145), and Y(143). Further, clustering analyses have identified seven major conformational states of the wild-type catalytic loop. Their implications for catalytic function and ligand interaction are discussed. The findings reported here provide a detailed view of the active site conformational dynamics and should be useful for structure-based inhibitor design for integrase.  相似文献   

15.
Amino acid pools were compared in a constructed diploid strain of Saccharomyces cerevisiae , SKD1, and a closely related strain, SKD2, carrying the slp1 mutation characterized by low pools of lysine and lacking a central vacuole. Cells of SKD2 grew more poorly than SKD1 but took up the same total amount of amino acids from the medium per cell although the profile differed between the two strains. Initially, the total pool was much higher in SKD1 than in SKD2 but the overall relative distribution between cytosol and vacuole was identical and mainly cytosolic even though the composition differed between the two strains. At the end of growth the amino acid concentration had increased and become predominantly vacuolar. Two days later the total pool in SKD1 had declined to the starting level but the intracellular distribution remained identical to that at the end of fermentation. The total concentration of amino acids in SKD2 continued to increase, particularly in the cytosol.  相似文献   

16.
All five subunits of yeast mitochondrial F1-ATPase have been isolated by reverse-phase high performance liquid chromatography. This procedure allows micro-preparative purification of all the subunits with 60% recoveries. The complete amino acid sequence of the epsilon-subunit has been established. This has been achieved by the sequence analysis of subnanomole amounts of the intact molecule and that of peptides derived by enzymatic digestion with endoproteinase Arg-C and by chemical cleavage with hydroxylamine. Yeast ATP synthase epsilon-subunit is composed of 61 residues with a calculated molecular mass of 6612 Da. This polypeptide is rather basic since it contains 7 basic residues and 3 acidic residues. This study shows a slight similarity with the bovine epsilon-subunit ATP synthase since there are 16 identical residues.  相似文献   

17.
18.
Du L  Su Y  Sun D  Zhu W  Wang J  Zhuang X  Zhou S  Lu Y 《FEMS yeast research》2008,8(4):531-539
Formic acid disrupts mitochondrial electron transport and sequentially causes cell death in mammalian ocular cells by an unidentified molecular mechanism. Here, we show that a low concentration of formic acid induces apoptosis-like cell death in the budding yeast Saccharomyces cerevisiae, with several morphological and biochemical changes that are typical of apoptosis, including chromatin condensation, DNA fragmentation, externalization of phosphatidylserine, reactive oxygen species (ROS) production, loss of mitochondrial membrane potential and mitochondrion destruction. This process may not be dependent on the activation of Yca1p, the yeast caspase counterpart. In addition, the cell death induced by formic acid is associated with ROS burst,while intracellular ROS accumulate more rapidly and to a higher level in the YCA1 disruptant than in the wild-type strain during the progression of cell death. Our data indicate that formic acid induces yeast apoptosis via an Yca1p-independent pathway and it could be used as an extrinsic inducer for identifying the regulators downstream of ROS production in yeast.  相似文献   

19.
Summary The addition of nalidixic acid to growing cells of the yeast Saccharomyces cerevisiae resulted in a transient depression in the rate of ribosomal precursor RNA production and a transient arrest of cells in G1. Protein synthesis rates were less affected. Lower concentrations of nalidixic acid also affected RNA synthesis and progression through G1 but had no effect on protein synthesis rates. We suggest that nalidixic acid has a primary effect on RNA synthesis leading to a G1 arrest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号