首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interspersed repetitive element (IRE)-PCR is a useful method for identification of novel human or mouse sequence tagged sites (STSs) from contigs of genomic clones. We describe the use of IRE-PCR with mouse B1 repetitive element primers to generate novel, PCR amplifiable, simple sequence length polymorphisms (SSLPs) from yeast artificial chromosome (YAC) clones containing regions of mouse chromosomes 13 and 14. Forty-two IRE-PCR products were cloned and sequenced from eight YACs. Of these, 29 clones contained multiple simple sequence repeat units. PCR analysis with primers derived from unique sequences flanking the simple sequence repeat units in seven clones showed all to be polymorphic between various mouse strains. This novel approach to SSLP identification represents an efficient method for saturating a genomic interval with polymorphic genetic markers that may expedite the positional cloning of genes for traits and diseases.  相似文献   

2.
Heterochromatin is a significant component of the human genome and the genomes of most model organisms. Although heterochromatin is thought to be largely non-coding, it is clear that it plays an important role in chromosome structure and gene regulation. Despite a growing awareness of its functional significance, the repetitive sequences underlying some heterochromatin remain relatively uncharacterized. We have developed a real-time quantitative PCR-based method for quantifying simple repetitive satellite sequences and have used this technique to characterize the heterochromatic Y chromosome of Drosophila melanogaster. In this report, we validate the approach, identify previously unknown satellite sequence copy number polymorphisms in Y chromosomes from different geographic sources, and show that a defect in heterochromatin formation can induce similar copy number polymorphisms in a laboratory strain. These findings provide a simple method to investigate the dynamic nature of repetitive sequences and characterize conditions which might give rise to long-lasting alterations in DNA sequence.  相似文献   

3.
D Tautz  M Renz 《Nucleic acids research》1984,12(10):4127-4138
Simple sequences are stretches of DNA which consist of only one, or a few tandemly repeated nucleotides, for example poly (dA) X poly (dT) or poly (dG-dT) X poly (dC-dA). These two types of simple sequence have been shown to be repetitive and interspersed in many eukaryotic genomes. Several other types have been found by sequencing eukaryotic DNA. In this report we have undertaken a systematical survey for simple sequences. We hybridized synthetical simple sequence DNA to genome blots of phylogenetically different organisms. We found that many, probably even all possible types of simple sequence are repetitive components of eukaryotic genomes. We propose therefore that they arise by common mechanisms namely slippage replication and unequal crossover and that they might have no general function with regards to gene expression. This latter inference is supported by the fact that we have detected simple sequences only in the metabolically inactive micronucleus of the protozoan Stylonychia, but not in the metabolically active macronucleus which is derived from the micronucleus by chromosome diminution.  相似文献   

4.
Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms   总被引:133,自引:0,他引:133  
J L Weber 《Genomics》1990,7(4):524-530
Abundant human interspersed repetitive DNA sequences of the form (dC-dA)n.(dG-dT)n have been shown to exhibit length polymorphisms. Examination of over 100 human (dC-dA)n.(dG-dT)n sequences revealed that the sequences differed from each other both in numbers of repeats and in repeat sequence type. Using a set of precise classification rules, the sequences were divided into three categories: perfect repeat sequences without interruptions in the runs of CA or GT dinucleotides (64% of total), imperfect repeat sequences with one or more interruptions in the run of repeats (25%), and compound repeat sequences with adjacent tandem simple repeats of a different sequence (11%). Informativeness of (dC-dA)n.(dG-dT)n markers in the perfect sequence category was found to increase with increasing average numbers of repeats. PIC values ranged from 0 at about 10 or fewer repeats to above 0.8 for sequences with about 24 or more repeats. (dC-dA)n.(dG-dT)n polymorphisms in the imperfect sequence category showed lower informativeness than expected on the basis of the total numbers of repeats. The longest run of uninterrupted CA or GT repeats was found to be the best predictor of informativeness of (dC-dA)n.(dG-dT)n polymorphisms regardless of the repeat sequence category.  相似文献   

5.
DNA重复序列的宏观分布趋势   总被引:3,自引:0,他引:3  
以GCG软件和数学模型为工具,用观察到的某DNA序列的频数(O)与理论计算出的此序列频数(T)的比值(O/T)为参数(即相对频数),将基因资料库(包括GenBank和EMBLDataBase)的DNA序列进行了分析.结果显示DNA重复序列的分布存在着如下趋势:(1)越简单的DNA重复序列,其相对频数越高,离平衡分布越远;(2)顺向重复序列的分布的相对频数高于反向重复序列的分布;(3)较长的保守序列的相对频数较高;(4)含AT碱基对的重复序列的相对频数高于含GC碱基对的重复序列,在较长的DNA重复序列中尤其明显:(5)上述DNA重复序列分布的趋势存在种属特异性.  相似文献   

6.
Genome organization of herpesvirus aotus type 2.   总被引:2,自引:1,他引:1       下载免费PDF全文
Herpesvirus aotus type 2, a virus commonly found in owl monkeys without overt disease, has a similar genome structure to the oncogenic herpesviruses of nonhuman primates (herpesvirus saimiri, herpesvirus ateles). Virion DNA of herpesvirus aotus type 2 (M-DNA) has an unique 110-kilobase-pair region of low G + C content (40.2%, L-DNA), inserted between stretches of repetitive H-DNA (68.7% G + C, about 41 kilobase pairs per molecule) that are variable in length. A minority of virions contain defective genomes that consist of repetitive H-DNA only. The H-DNA is composed of various types of repeat units that are related in sequence with each other. The two dominant types of repeats (2.3 and 2.7 kilobase pairs) were cloned and compared by restriction enzyme cleavages and partial nucleotide sequencing. They are homologous in at least 1.3 kilobase pairs. The two forms of repeat units are randomly arranged and oriented in tandem. Reassociation kinetics did not allow detection of sequence homologies between H- and L-DNA of herpesvirus aotus type 2 and the respective sequences of oncogenic primate herpesviruses.  相似文献   

7.
A family of four genes that encode major secreted mucins (MUC6, MUC2, MUC5AC and MUC5B) map to within 400kb on chromosome 11p15.5. These genes contain long stretches of tandem repeats of sequence that encode serine- and threonine-rich domains but that otherwise show no similarity from gene to gene, and regions of unique sequence domains that do show evidence of sequence homology. We have previously reported the existence of polymorphism in three of these genes but the extent and nature of this allelic variation is now described here in detail. Variable number tandem repeat polymorphisms of MUC6, MUC2 and MUC5AC are predicted to encode mucin polypeptides that differ in length. In the case of MUC2 and MUC6 these length differences are substantial (up to twofold). MUC5B in contrast does not show common allele length variation. Three MUC2 mutations are reported, none of which are associated with the meiotic recombinations previously observed in this region of chromosome 11. Received: 24 July 1997 / Accepted: 13 November 1997  相似文献   

8.
Huntley MA  Golding GB 《Proteins》2002,48(1):134-140
A simple sequence is abundant in the proteins that have been sequenced to date. But unusual protein features, such as a simple sequence, are not present in the same high frequency within structural databases. A subset of these simple sequences, a group with a highly repetitive nature has been shown to be abundant in eukaryotes but not in prokaryotes. In this study, an examination of the eukaryotic proteins in the Protein Data Bank (PDB) has revealed a large deficiency of low complexity, highly repetitive protein repeats. Through simulated databases of similar samples of eukaryotic proteins taken from the National Center for Biotechnology Information (NCBI) database, it is shown that the PDB contains a significantly less highly repetitive, simple sequence than artificial databases of similar composition randomly derived from NCBI. When the structural data for those few PDB sequences that did contain a highly repetitive simple sequence is examined in detail, it is found that in most cases the tertiary structure is unknown for the regions consisting of a simple sequence. This lack of a simple sequence both in the PDB database and in the structural information suggests that this type of simple sequence may produce disordered structures that make structural characterization difficult.  相似文献   

9.
Organization of the Euplotes crassus micronuclear genome   总被引:11,自引:0,他引:11  
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

10.
《Plant science》1988,55(1):43-52
Reassociation of high molecular weight rice DNA has revealed the occurrence of long stretches of repeated DNA which are not interrupted by single copy DNA even at a fragment length as high as 20 kilo base pairs (kbp). Majority of these repeated sequences are unusually G + C rich and show significant variations in their thermal stability. Homology studies indicate that short repeats may have evolved from long repeats in total repetitive DNA while they may be of different origin in highly repetitive DNA fraction. Restriction enzyme analysis shows the occurrence of Ava I and EcoR V repeat families.  相似文献   

11.
Jahn CL  Prescott KE  Waggener MW 《Genetics》1988,120(1):123-134
In the hypotrichous ciliated protozoan Oxytricha nova, approximately 95% of the micronuclear genome, including all of the repetitive DNA and most of the unique sequence DNA, is eliminated during the formation of the macronuclear genome. We have examined the interspersion patterns of repetitive and unique and eliminated and retained sequences in the micronuclear genome by characterizing randomly selected clones of micronuclear DNA. Three major classes of clones have been defined: (1) those containing primarily unique, retained sequences; (2) those containing only unique, eliminated sequences; and (3) those containing only repetitive, eliminated sequences. Clones of type one and three document two aspects of organization observed previously: clustering of macronuclear destined sequences and the presence of a prevalent repetitive element. Clones of the second type demonstrate for the first time that eliminated unique sequence DNA occurs in long stretches uninterrupted by repetitive sequences. To further examine repetitive sequence interspersion, we characterized the repetitive sequence family that is present in 50% of the clones (class three above). A consensus map of this element was obtained by mapping approximately 80 phage clones and by hybridization to digests of micronuclear DNA. The repeat element is extremely large (approximately 24 kb) and is interspersed with both macronuclear destined sequences and eliminated unique sequences.  相似文献   

12.
The sequence organization of four different families of Y chromosomal repetitive DNA is characterized at three levels of spatial extension along the Y chromosome of Drosophila hydei. At the lowest level of resolution, DNA blot analysis of Y chromosomal fragments of different lengths and in situ hybridization experiments on metaphase chromosomes demonstrate the clustering of each particular sequence family within one defined region of the chromosome. At a higher level of resolution, family specific repeats can be detected within these clusters by crosshybridization within 10–20 kb long continuous stretches of cloned DNA in EMBL3 phages. At the highest level of resolution, detailed sequence analysis of representative subclones about 1 kb in length reveals a satellite-like head to tail arrangement of family specific degenerated subrepeats as the building scheme common to all four families. Our results provide the first comparative sequence analysis of three novel families of repetitive DNA on the long arm of the F chromosome of D. hydei. Additional data are presented which support the existence of two related subfamilies of repetitive DNA on the short arm of the Y chromosome.  相似文献   

13.
M M Mahtani  H F Willard 《Genomics》1990,7(4):607-613
Using pulsed-field gel analysis (PFGE), we have characterized the large array of alpha-satellite DNA located in the centromeric region of the human X chromosome. The tandem repetitive nature of this DNA family lends itself to examination by PFGE using restriction enzymes that cleave frequently in unique sequence DNA but which cut only rarely within the repetitive alpha-satellite array. Several such restriction enzymes (BglI, BglII, KpnI, ScaI) have proven highly informative in sizing the alpha-satellite array and in following the segregation of individual X-chromosome centromeres using PFGE polymorphisms. Among 29 different X chromosomes, alpha-satellite array length varied between 1380 and 3730 kb (mean = 2895 kb; SD = 537). In three large CEPH families comprising 24 meioses, inheritance of these PFGE polymorphisms was strictly Mendelian, with no indication of intraarray recombination. Such DXZ1 alpha-satellite polymorphisms, therefore, may prove useful in the study of pericentromeric X-linked disorders.  相似文献   

14.
A single 880-base-pair region within the genome of simian cytomegalovirus strain Colburn contains sequences that hybridize intensely with both human and mouse total genome DNA probes. This sequence was also found in a second simian cytomegalovirus isolate and was retained in both plaque-purified virus subclones and in plasmid DNA clones containing the SalI P fragment. Cleaved genomic DNAs from several mammalian species all exhibited strong dispersed hybridization with the SalI-P probes, and over 70% of the lambda clones in a mouse genomic library plus several selected clones containing globin, 45S rDNA, or 5S rDNA genes all formed hybrids with SalI-P. The appropriate region of cytomegalovirus SalI-P contains relatively A + T-rich unique sequences interrupted by three stretches of the simple alternating dinucleotides, (CA)15, (CA)22, and (CA)21, which we show to be responsible for most of the cell-virus homology. We conclude that discrete, tandemly repeated (CA) dinucleotide tracts capable of forming left-handed Z-DNA helices punctuate mammalian genomes at greater than 10(5) copies per cell and that three adjacent copies of what appear to be a family of interspersed repetitive elements containing these (CA)n stretches are carried in the genomes of simian cytomegaloviruses.  相似文献   

15.
We describe a simple polymerase chain reaction (PGR)-based method for isolating short stretches of nontelomeric DNA adjacent to arrays of telomere repeat units, in principle applicable to any species for which the telomere repeat sequence is known. Application of this approach to human DNA resulted in the isolation of many candidate telomere junction clones, at least some of which were shown to be derived from telomere-adjacent regions. Most of the isolated clones detect multiple sequences in the human genome which represent one or a few sequence families present at the ends of most or all autosomes and variably truncated before the start of the telomere repeat array. Substantial sequence divergence between different members of these sequence families suggests a low rate of sequence homogenization by telomere exchange processes. The pseudoautosomal telomere junction has also been isolated and contains a shortened version of a recently described family of short interspersed repetitive elements (SINEs), only 14 base pairs (b.p.) from the start of the telomere.  相似文献   

16.
Long PCR was used to amplify a 5-kb fragment of the bacterial ribosomal operon (16S-intergenic spacer region (ISR)-23S) from several Ralstonia eutropha strains (16S rDNA sequence similarity: 97-99%). Due to the large product size, amplicons from the different strains could be distinguished using restriction enzyme fragment length polymorphisms (RFLP) and repetitive PCR analysis (Rep-PCR) with the primer 1492r. These methods may prove useful in differentiating other bacterial strains with highly similar 16S rDNA sequences.  相似文献   

17.
Euplotes crassus, like other hypotrichous ciliated protozoa, eliminates most of its micronuclear chromosomal DNA in the process of forming the small linear DNA molecules that comprise the macronuclear genome. By characterizing randomly selected lambda phage clones of E. crassus micronuclear DNA, we have determined the distribution of repetitive and unique sequences and the arrangement of macronuclear genes relative to eliminated DNA. This allows us to compare the E. crassus micronuclear genome organization to that of another distantly related hypotrichous ciliate, Oxytricha nova. The clones from E. crassus segregate into three prevalent classes: those containing primarily eliminated repetitive DNA (Class I); those containing macronuclear genes in addition to repetitive sequences (Class II); and those containing only eliminated unique sequence DNA (Class III). All of the repetitive sequences in these clones belong to the same highly abundant repetitive element family. Our results demonstrate that the sequence organization of the E. crassus and O. nova micronuclear genomes is related in that the macronuclear genes are clustered together in the micronuclear genome and the eliminated unique sequences occur in long stretches that are uninterrupted by repetitive sequences. In both organisms a single repetitive element family comprises the majority of the eliminated interspersed middle repetitive DNA and appears to be preferentially associated with the macronuclear sequence clusters. The similarities in the sequence organization in these two organisms suggest that clustering of macronuclear genes plays a role in the chromosome fragmentation process.  相似文献   

18.
Survey of human and rat microsatellites   总被引:44,自引:0,他引:44  
Length variations in simple sequence tandem repeats (microsatellite DNA polymorphisms) are finding increasing usage in mammalian genetics. Although every variety of short tandem repeat that has been tested has been shown to exhibit length polymorphisms, little information on the relative abundance of the different repeat motifs has been collected. In this report, summaries of GenBank searches for all possible human and rat microsatellites ranging from mononucleotide to tetranucleotide repeats are presented. In humans, the five most abundant microsatellites with total lengths for the runs of repeats of greater than or equal to 20 nucleotides contained repeat sequences of A, AC, AAAN, AAN, and AG, in order of decreasing abundance, where N is C, G, or T. These five groups comprised about 76% of all microsatellites. Many other human simple sequence repeats were found at low frequency. In the 745 kb of human genomic DNA surveyed, one microsatellite of greater than or equal to 20 nucleotides in length was found, on average, every 6 kb. Only 12% of the human microsatellites had total lengths greater than or equal to 40 nucleotides. Roughly 80% of the A, AAN, and AAAN microsatellites and 50% of the AT microsatellites, but few of the other human microsatellites, were found to be associated with interspersed, repetitive Alu elements. In rats, the five most abundant microsatellites contained AC, AG, A, AAAN, and AAGG sequences, respectively. Rat microsatellites were generally longer than human microsatellites, with 43% of the rat sequences greater than or equal to 40 nucleotides.  相似文献   

19.
Sequence organization of the human genome   总被引:1,自引:0,他引:1  
The organization of three sequence classes—single copy, repetitive, and inverted repeated sequences—within the human genome has been studied by renaturation techniques, hydroxylapatite binding methods, and DNA hyperchromism. Repetitive sequence classes are distributed throughout 80% or more of the genome. Slightly more than half of the genome consists of short single copy sequences, with a length of about 2 kb interspersed with repetitive sequences. The average length of the repetitive sequences is also small and approximates the length of these sequences found in other organisms. The sequence organization of the human genome therefore resembles the sequence organization found in Xenopus and sea urchin. The inverted repeats are essentially randomly positioned with respect to both sequence class and sequence arrangement, so that all three sequence classes are found to be mutually interspersed in a portion of the genome.  相似文献   

20.
Slippage synthesis of simple sequence DNA.   总被引:82,自引:8,他引:82       下载免费PDF全文
The analysis of slippage synthesis of simple sequence DNA in vitro sheds some light on the question of how simple sequences arise in vivo. We show that it is possible to synthesize all types of repetitious di- and trinucleotide motifs starting from short primers and a polymerase in vitro. The rate of this synthesis depends on a sequence specific slippage rate, but is independent of the length of the fragments being synthesized. This indicates that only the ends of the DNA fragments are involved in determining this rate and that slippage is accordingly a short range effect. Slippage synthesis occurs also on a fixed template where only one strand is free to move, a situation which resembles chromosome replication in vivo. It seems therefore likely that slippage during replication is the cause of the observed length polymorphism of simple sequence stretches between individuals of a population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号