首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Zhu GD  L'Hernault SW 《Genetics》2003,165(1):145-157
Caenorhabditis elegans spermatid formation involves asymmetric partitioning of cytoplasm during the second meiotic division. This process is mediated by specialized ER/Golgi-derived fibrous body-membranous organelles (FB-MOs), which have a fibrous body (FB) composed of bundled major sperm protein filaments and a vesicular membranous organelle (MO). spe-39 mutant spermatocytes complete meiosis but do not usually form spermatids. Ultrastructural examination of spe-39 spermatocytes reveals that MOs are absent, while FBs are disorganized and not surrounded by the membrane envelope usually observed in wild type. Instead, spe-39 spermatocytes contain many small vesicles with internal membranes, suggesting they are related to MOs. The spe-39 gene was identified and it encodes a novel hydrophilic protein. Immunofluorescence with a specific SPE-39 antiserum reveals that it is distributed through much of the cytoplasm and not specifically associated with FB-MOs in spermatocytes and spermatids. The spe-39 gene has orthologs in Drosophila melanogaster and humans but no homolog was identified in the yeast genome. This suggests that the specialized membrane biogenesis steps that occur during C. elegans spermatogenesis are part of a conserved process that requires SPE-39 homologs in other metazoan cell types.  相似文献   

3.
4.
Using RNA-mediated genetic interference in a phenotypic screen, we identified a conserved nonmuscle myosin II regulatory light chain gene in Caenorhabditis elegans, which we name mlc-4. Maternally supplied mlc-4 function is required for cytokinesis during both meiosis and mitosis and for establishment of anterior-posterior (a-p) asymmetries after fertilization. Reducing the function of mlc-4 or nmy-2, a nonmuscle myosin II gene, also leads to a loss of polarized cytoplasmic flow in the C. elegans zygote, supporting models in which cytoplasmic flow may be required to establish a-p differences. Germline P granule localization at the time of cytoplasmic flow is also lost in these embryos, although P granules do become localized to the posterior pole after the first mitosis. This result suggests that a mechanism other than cytoplasmic flow or mlc-4/nmy-2 activity can generate some a-p asymmetries in the C. elegans zygote. By isolating a deletion allele, we show that removing zygotic mlc-4 function results in an elongation phenotype during embryogenesis. An mlc-4/green fluorescent protein transgene is expressed in lateral rows of hypodermal cells and these cells fail to properly change shape in mlc-4 mutant animals during elongation.  相似文献   

5.
The conserved oligomeric Golgi complex (COG) is a hetero-octomeric peripheral membrane protein required for retrograde vesicular transport and glycoconjugate biosynthesis within the Golgi. Mutations in subunits 1, 4, 5, 6, 7 and 8 are the basis for a rare inheritable human disease termed congenital disorders of glycosylation type-II. Defects to COG complex function result in aberrant glycosylation, protein trafficking and Golgi structure. The cellular function of the COG complex and its role in protein glycosylation are not completely understood. In this study, we report the first detailed structural analysis of N-glycans from a COG complex-deficient organism. We employed sequential ion trap mass spectrometry of permethylated N-glycans to demonstrate that the COG complex is essential for the formation of fucose-rich N-glycans, specifically antennae fucosylated structures in Caenorhabditis elegans. Our results support the supposition that disruption to the COG complex interferes with normal protein glycosylation in the medial and/or trans-Golgi.  相似文献   

6.
The netrins and slits are two families of widely conserved cues that guide axons and cells along the dorsal-ventral (D-V) axis of animals. These cues typically emanate from the dorsal or ventral midlines and provide spatial information to migrating cells by?forming gradients along the D-V axis. Some cell types, however, extend processes to both the dorsal and ventral midlines, suggesting the existence of additional guidance cues that are secreted from both midlines. Here, we report that a previously uncharacterized protein called MADD-4 is secreted by the dorsal and ventral nerve cords of the nematode C.?elegans to attract sensory axons and muscle?membrane extensions called muscle arms. MADD-4's activity is dependent on UNC-40/DCC, a netrin receptor, which functions cell-autonomously to direct membrane extension. The biological role of MADD-4 orthologs, including ADAMTSL1 and 3 in mammals, is unknown. MADD-4 may therefore represent the founding member of a family of guidance proteins.  相似文献   

7.
Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity.  相似文献   

8.
In wild-type Caenorhabditis elegans, the gonad is a complex epithelial tube that consists of long arms composed predominantly of germline tissue as well as somatic structures specialized for particular reproductive functions. In gon-1 mutants, the adult gonad is severely disorganized with essentially no arm extension and no recognizable somatic structure. The developmental defects in gon-1 mutants are limited to the gonad; other cells, tissues, and organs appear to develop normally. Previous work defined the regulatory "leader" cells as crucial for extension of the gonadal arms (J. E. Kimble and J. G. White, 1981, Dev. Biol. 81, 208-219). In gon-1 mutants, the leader cells are specified correctly, but they fail to migrate and gonadal arms are not generated. In addition, gon-1 is required for morphogenesis of the gonadal somatic structures. This second role appears to be independent of that required for leader migration. Parallel studies have shown that gon-1 encodes a secreted metalloprotease (R. Blelloch and J. Kimble, 1999, Nature 399, 586-590). We discuss how a metalloprotease may control two aspects of gonadal morphogenesis.  相似文献   

9.
mab-5 is a member of a complex of homeobox-containing genes evolutionarily related to the Antennapedia and bithorax complexes of Drosophila melanogaster. Like the homeotic genes in Drosophila, mab-5 is required in a particular region along the anterior-posterior body axis, and acts during postembryonic development to give cells in this region their characteristic identities. We have used a mab-5-lacZ fusion integrated into the C. elegans genome to study the posterior-specific expression of mab-5 during embryogenesis. The mab-5-lacZ fusion was expressed in the posterior of the embryo by 180 minutes after the first cleavage, indicating that the mechanisms responsible for the position-specific expression of mab-5-lacZ act at a relatively early stage of embryogenesis. In embryos homozygous for mutations in the par genes, which disrupt segregation of factors during early cleavages, expression of mab-5-lacZ was no longer localized to the posterior. This suggests that posterior-specific expression of mab-5 depends on the appropriate segregation of developmental factors during early embryogenesis. After extrusion of any blastomere of the four-cell embryo, descendants of the remaining three cells could still express the mab-5-lacZ fusion. In these partial embryos, however, the fusion was often expressed in cells scattered throughout the embryo, suggesting that cell-cell interactions and/or proper positioning of early blastomeres are required for mab-5 expression to be localized to the posterior.  相似文献   

10.
11.
Gut granules are specialized lysosome-related organelles that act as sites of fat storage in Caenorhabditis elegans intestinal cells. We identified mutations in a gene, glo-3, that functions in the formation of embryonic gut granules. Some glo-3(−) alleles displayed a complete loss of embryonic gut granules, while other glo-3(−) alleles had reduced numbers of gut granules. A subset of glo-3 alleles led to mislocalization of gut granule contents into the intestinal lumen, consistent with a defect in intracellular trafficking. glo-3(−) embryos lacking gut granules developed into adults containing gut granules, indicating that glo-3(+) function may be differentially required during development. We find that glo-3(+) acts in parallel with or downstream of the AP-3 complex and the PGP-2 ABC transporter in gut granule biogenesis. glo-3 encodes a predicted membrane-associated protein that lacks obvious sequence homologs outside of nematodes. glo-3 expression initiates in embryonic intestinal precursors and persists almost exclusively in intestinal cells through adulthood. GLO-3GFP localizes to the gut granule membrane, suggesting it could play a direct role in the trafficking events at the gut granule. smg-1(−) suppression of glo-3(−) nonsense alleles indicates that the C-terminal half of GLO-3, predicted to be present in the cytoplasm, is not necessary for gut granule formation. Our studies identify GLO-3 as a novel player in the formation of lysosome-related organelles.  相似文献   

12.
The gene nhr-6 encodes the Caenorhabditis elegans ortholog of the NR4A nuclear receptor. We determined the biological functions of NHR-6 through the isolation and characterization of a deletion allele of nhr-6, lg6001. We demonstrate that nhr-6 has an essential role in the development of the C. elegans somatic gonad. Specifically, nhr-6 is required for the development of the hermaphrodite spermatheca, a somatic gonad organ that serves as the site of sperm storage and oocyte fertilization. Using a variety of spermatheca cell markers, we have determined that loss of nhr-6 function causes severe morphological defects in the spermatheca and associated spermathecal valves. This appears to be due to specific requirements for nhr-6 in regulating cell proliferation and cell differentiation during development of these structures. The improper development of these structures in nhr-6(lg6001) mutants leads to defects in ovulation and significantly reduced fecundity of C. elegans hermaphrodites. The phenotypes of nhr-6(lg6001) mutants are consistent with a role for nhr-6 in organogenesis, similar to the functions of its mammalian homologs.  相似文献   

13.
BACKGROUND: Chromosome segregation during mitosis and meiosis is triggered by dissolution of sister chromatid cohesion, which is mediated by the cohesin complex. Mitotic sister chromatid disjunction requires that cohesion be lost along the entire length of chromosomes, whereas homolog segregation at meiosis I only requires loss of cohesion along chromosome arms. During animal cell mitosis, cohesin is lost in two steps. A nonproteolytic mechanism removes cohesin along chromosome arms during prophase, while the proteolytic cleavage of cohesin's Scc1 subunit by separase removes centromeric cohesin at anaphase. In Saccharomyces cerevisiae and Caenorhabditis elegans, meiotic sister chromatid cohesion is mediated by Rec8, a meiosis-specific variant of cohesin's Scc1 subunit. Homolog segregation in S. cerevisiae is triggered by separase-mediated cleavage of Rec8 along chromosome arms. In principle, chiasmata could be resolved proteolytically by separase or nonproteolytically using a mechanism similar to the mitotic "prophase pathway." RESULTS: Inactivation of separase in C. elegans has little or no effect on homolog alignment on the meiosis I spindle but prevents their timely disjunction. It also interferes with chromatid separation during subsequent embryonic mitotic divisions but does not directly affect cytokinesis. Surprisingly, separase inactivation also causes osmosensitive embryos, possibly due to a defect in the extraembryonic structures, referred to as the "eggshell." CONCLUSIONS: Separase is essential for homologous chromosome disjunction during meiosis I. Proteolytic cleavage, presumably of Rec8, might be a common trigger for the first meiotic division in eukaryotic cells. Cleavage of proteins other than REC-8 might be necessary to render the eggshell impermeable to solutes.  相似文献   

14.
15.
Caenorhabditis elegans reticulon interacts with RME-1 during embryogenesis   总被引:4,自引:0,他引:4  
Reticulon (RTN) family proteins are localized in the endoplasmic reticulum (ER). At least four different RTN genes have been identified in mammals, but in most cases, the functions of the encoded proteins except mammalian RTN4-A and RTN4-B are unknown. Each RTN gene produces 1-3 proteins by different promoters and alternative splicing. In Caenorhabditis elegans, there is a single gene (rtn gene) encoding three reticulon proteins, nRTN-A, B, and C. mRNA of nRTN-C is expressed in germ cells and embryos. However, nRTN-C protein is only expressed during embryogenesis and rapidly disappears after hatch. By yeast two-hybrid screening, two clones encoding the same C-terminal region of RME-1, a protein functioning in the endocytic recycling, were isolated. These findings suggest that nRTN-C functions in the endocytic pathway during embryogenesis.  相似文献   

16.
17.
18.
Autophagy is the main process for bulk protein and organelle recycling in cells under extracellular or intracellular stress. Deregulation of autophagy has been associated with pathological conditions such as cancer, muscular disorders and neurodegeneration. Necrotic cell death underlies extensive neuronal loss in acute neurodegenerative episodes such as ischemic stroke. We find that excessive autophagosome formation is induced early during necrotic cell death in C. elegans. In addition, autophagy is required for necrotic cell death. Impairment of autophagy by genetic inactivation of autophagy genes or by pharmacological treatment suppresses necrosis. Autophagy synergizes with lysosomal catabolic mechanisms to facilitate cell death. Our findings demonstrate that autophagy contributes to cellular destruction during necrosis. Thus, interfering with the autophagic process may protect neurons against necrotic damage in humans.  相似文献   

19.
Cysteine proteases play critical biological roles in both intracellular and extracellular processes. We characterized Ce-cpl-1, a Caenorhabditis elegans cathepsin L-like cysteine protease. RNA interference with Ce-cpl-1 activity resulted in embryonic lethality and a transient delayed growth of larvae to egg producing adults, suggesting an essential role for cpl-1 during embryogenesis, and most likely during post-embryonic development. Cpl-1 gene (Ce-cpl-1:lacZ) is widely expressed in the intestine and hypodermal cells of transgenic worms, while the fusion protein (Ce-CPL-1::GFP) was expressed in the hypodermis, pharynx, and gonad. The CPL-1 native protein accumulates in early to late stage embryos and becomes highly concentrated in gut cells during late embryonic development. CPL-1 is also present near the periphery of the eggshell as well as in the cuticle of larval stages suggesting that it may function not only in embryogenesis but also in further development of the worm. Although the precise role of Ce-CPL-1 during embryogenesis is not yet clear it could be involved in the processing of nutrients responsible for synthesis and/or in the degradation of eggshell. Moreover, an increase in the cpl-1 mRNA is seen in the intermolt period approximately 4 h prior to each molt. During this process Ce-CPL-1 may act as a proteolytic enzyme in the processing/degradation of cuticular or other proteins. Similar localization of a related cathepsin L in the filarial nematode Onchocerca volvulus, eggshell and cuticle, suggests that some of the Ce-CPL-1 function during development may be conserved in other parasitic nematodes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号