首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morii T  Sato S  Hagihara M  Mori Y  Imoto K  Makino K 《Biochemistry》2002,41(7):2177-2183
We have employed a structure-based design to construct a small folding domain from the F-actin bundling protein villin that contains the amino acids necessary for the DNA binding of the basic leucine zipper protein GCN4 and have compared its DNA binding with GCN4. The monomeric motif folds into a stable domain and binds DNA in a rigid-body mechanism, while its affinity is not higher than that of the basic region peptide. The addition of the leucine zipper region to the folded domain restored its sequence-specific DNA binding comparable to that of GCN4. Unlike the monomeric folded domain, its leucine zipper derivative undergoes a conformational change upon DNA binding. CD spectral and thermodynamic studies indicate that the DNA-contacting region is folded in the presence or absence of DNA and suggest that the junction between the DNA-contacting and the leucine zipper regions transits to a helix in the presence of DNA. These results demonstrate that the structural transition outside the direct-contacting region, which adjusts the precise location of the DNA-contacting region, plays a critical role in the specific complex formation of basic leucine zipper proteins.  相似文献   

2.
3.
4.
5.
Sequence-specific DNA binding of short peptide dimers derived from a plant basic leucine zipper protein EmBP1 was studied. A homodimer of the EmBP1 basic region peptide recognized a palindromic DNA sequence, and a heterodimer of EmBP1 and GCN4 basic region peptides targets a non-palindromic DNA sequence when a beta-cyclodextrin/adamantane complex is utilized as a dimerization domain. A homodimer of the EmBP1 basic region peptide binds the native EmBP1 binding 5'-GCCACGTGGC-3' and the native GCN4 binding 5'-ATGACGTCAT-3' sequences with almost equal affinity in the alpha-helical conformation, indicating that the basic region of EmBP1 by itself has a dual recognition codes for the DNA sequences. The GCN4 basic region peptide binds 5'-ATGAC-3' in the alpha-helical conformation, but it neither shows affinity nor helix formation with 5'-GCCAC-3'. Because native EmBP1 forms 100 times more stable complex with 5'-GCCACGTGGC-3' over 5'-ATGACGTCAT-3', our results suggest that the sequence-selectivity of native EmBP1 is dictated by the structure of leucine zipper dimerization domain including the hinge region spanning between the basic region and the leucine zipper.  相似文献   

6.
7.
8.
9.
Basic region-leucine zipper (B-ZIP) proteins homo- or heterodimerize to bind sequence-specific double-stranded DNA. We present circular dichroism (CD) thermal denaturation data on vitellogenin promoter-binding protein (VBP), a member of the PAR subfamily of B-ZIP proteins that also includes thyroid embryonic factor, hepatocyte leukemia factor, and albumin site D-binding protein. VBP does not heterodimerize with B-ZIP domains from C/EBP alpha, JUND, or FOS. We describe a dominant negative protein, A-VBP, that contains the VBP leucine zipper and an acidic amphipathic protein sequence that replaces the basic region critical for DNA binding. The acidic extension forms a coiled coil structure with the VBP basic region in the VBP.A-VBP heterodimer. This new alpha-helical structure extends the leucine zipper N-terminally, stabilizing the complex by 2.0 kcal/mol. A-VBP abolishes DNA binding of VBP in an equimolar competition assay, but does not affect DNA binding even at 100-fold excess of CREB, C/EBP alpha, or FOS/JUND. Likewise, proteins containing the acidic extension appended to seven other leucine zippers do not inhibit VBP DNA binding. We show that conserved g <--> e' or i, i' +5 salt bridges are sufficient to confer specificity to VBP by mutating the C/EBPalpha leucine zipper to contain the g <--> e' salt bridges that characterize VBP. A-VBP heterodimerizes with this mutant C/EBP, preventing it from binding to DNA. These conserved g <--> e' electrostatic interactions define the specificity of the PAR subfamily of B-ZIP proteins and preclude interaction with other B-ZIP subfamilies.  相似文献   

10.
11.
The rice low-temperature-induced lip19 gene encodes a 148-amino-acid basic region/leucine zipper (bZIP) protein, termed LIP19. In this study we characterized LIP19 and showed that it lacks the usual ability of bZIP proteins to homodimerize and to bind DNA, as does the Fos protein in mammals. Using a yeast two-hybrid system, the cDNA clones whose products interact with LIP19 were screened. This search revealed a clone termed OsOBF1 (Oryza sativa OBF1) that encodes a new bZIP protein (OsOBF1). This protein forms a homodimer and binds to the hexamer motif sequence (5'-ACGTCA-3'). The protein-protein interaction in homo- and hetero-combinations between LIP19 and OsOBF1 was confirmed in vitro and in planta. LIP19 and OsOBF1 most likely interact with each other more strongly than OsOBF1 interacts with itself, and the resulting heterodimer binds to the C/G hybrid sequence but not to the hexamer sequence. Whereas the expression patterns of lip19 and OsOBF1 in response to low temperatures were totally opposite, the locations of their expression were almost identical. Based upon the presented data, we propose a model describing the low-temperature signal switching mediated by LIP19 in rice.  相似文献   

12.
13.
14.
15.
Feedback repression of the genes encoding the low density lipoprotein receptor and several enzymes of the cholesterol biosynthetic pathway is mediated by 25-hydroxycholesterol and other oxysterols. In this study, we have cloned a rabbit cDNA encoding an oxysterol-binding protein that may play a role in this regulation. The predicted amino acid sequence revealed a protein of 809 amino acids with two distinctive features: 1) a glycine- and alanine-rich region (63% of 80 residues) at the NH2 terminus, and 2) a 35-residue leucine zipper motif that may mediate the previously observed oligomerization of the protein. When transfected into simian COS cells, the rabbit cDNA produced a protein that exhibited the same affinity and specificity for sterols as the previously purified hamster liver protein. Immunoblotting analysis showed that the rabbit cDNA encodes both the 96- and 101-kilodalton forms of the oxysterol-binding protein that were previously observed. The availability of an expressible cDNA for the oxysterol-binding protein should help elucidate its role in sterol metabolism.  相似文献   

16.
17.
We have examined the dynamics of cAMP-response element-binding protein (CREB) binding to chromatin in live cells using fluorescence recovery after photobleaching (FRAP). CREB was found to bind to target sites with a residence time of 100 s, and exposure to a cAMP agonist had no effect on these kinetics. In addition to the basic region/leucine zipper (bZIP) domain, a glutamine-rich trans-activation domain in CREB called Q2 also appeared to be critical for promoter occupancy. Indeed, mutations in Q2 that reduced residence time by FRAP assay disrupted target gene activation via CREB in cells exposed to a cAMP agonist. Notably, insertion of the glutamine-rich B trans-activation domain of SP1 into a mutant CREB polypeptide lacking Q2 stabilized CREB occupancy and rescued target gene activation. These results suggest a novel mechanism by which the family of glutamine-rich activators promotes cellular gene expression.  相似文献   

18.
The hepatitis C virus (HCV) nonstructural (NS) protein 4B is known for protein–protein interactions with virus and host cell factors. Only little is known about the corresponding protein binding sites and underlying molecular mechanisms. Recently, we have predicted a putative basic leucine zipper (bZIP) motif within the aminoterminal part of NS4B. The aim of this study was to investigate the importance of this NS4B bZIP motif for specific protein–protein interactions. We applied in silico approaches for 3D‐structure modeling of NS4B‐homodimerization via the bZIP motif and identified crucial amino acid positions by multiple sequence analysis. The selected sites were used for site‐directed mutagenesis within the NS4B bZIP motif and subsequent co‐immunoprecipitation of wild‐type and mutant NS4B molecules. Respective interaction energies were calculated for wild‐type and mutant structural models. NS4B‐homodimerization with a gradual alleviation of dimer interaction from wild‐type towards the mutant‐dimers was observed. The putative bZIP motif was confirmed by a co‐immunoprecipitation assay and western blot analysis. NS4B‐NS4B interaction depends on the integrity of the bZIP hydrophobic core and can be abolished due to changes of crucial residues within NS4B. In conclusion, our data indicate NS4B‐homodimerization and that this interaction is facilitated by the aminoterminal part containing a bZIP motif.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号