首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coenzyme F(420), a hydride carrier, is found in Archaea and some bacteria and has crucial roles in methanogenesis, antibiotic biosynthesis, DNA repair, and activation of antitubercular compounds. CofD, 2-phospho-l-lactate transferase, catalyzes the last step in the biosynthesis of F(420)-0 (F(420) without polyglutamate), by transferring the lactyl phosphate moiety of lactyl(2)diphospho-(5')guanosine to 7,8-didemethyl-8-hydroxy-5-deazariboflavin ribitol (Fo). CofD is highly conserved among F(420)-producing organisms, and weak sequence homologs are also found in non-F(420)-producing organisms. This superfamily does not share any recognizable sequence conservation with other proteins. Here we report the first crystal structures of CofD, the free enzyme and two ternary complexes, with Fo and P(i) or with Fo and GDP, from Methanosarcina mazei. The active site is located at the C-terminal end of a Rossmann fold core, and three large insertions make significant contributions to the active site and dimer formation. The observed binding modes of Fo and GDP can explain known biochemical properties of CofD and are also supported by our binding assays. The structures provide significant molecular insights into the biosynthesis of the F(420) coenzyme. Large structural differences in the active site region of the non-F(420)-producing CofD homologs suggest that they catalyze a different biochemical reaction.  相似文献   

2.
F(420) is a flavin-like redox-active coenzyme commonly used by archaea and some eubacteria in a variety of biochemical reactions in methanogenesis, the formation of secondary metabolites, the degradation of nitroaromatic compounds, activation of nitroimidazofurans, and F(420)-dependent photolysis in DNA repair. Coenzyme F(420)-2 biosynthesis from 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo) and lactaldehyde involves six enzymatic steps and five proteins (CofA, CofB, CofC, CofD, and CofE). CofE, a F(420)-0:gamma-glutamyl ligase, is responsible for the last two enzymatic steps; it catalyses the GTP-dependent addition of two L-glutamate residues to F(420)-0 to form F(420)-2. CofE is found in archaea, the aerobic actinomycetes, and cyanobacteria. Here, we report the first crystal structure of the apo-F(420)-0:gamma-glutamyl ligase (CofE-AF) from Archaeoglobus fulgidus and its complex with GDP at 2.5 A and 1.35 A resolution, respectively. The structure of CofE-AF reveals a novel protein fold with an intertwined, butterfly-like dimer formed by two-domain monomers. GDP and Mn(2+) are bound within the putative active site in a large groove at the dimer interface. We show that the enzyme adds a glutamate residue to both F(420)-0 and F(420)-1 in two distinct steps. CofE represents the first member of a new structural family of non-ribosomal peptide synthases.  相似文献   

3.
Graupner M  White RH 《Biochemistry》2001,40(36):10859-10872
The biochemical route for the formation of the phosphodiester bond in coenzyme F(420), one of the methanogenic coenzymes, has been established in the methanoarchaea Methanosarcina thermophila and Methanococcus jannaschii. The first step in the formation of this portion of the F(420) structure is the GTP-dependent phosphorylation of L-lactate to 2-phospho-L-lactate and GDP. The 2-phospho-L-lactate represents a new natural product that was chemically identified in Methanobacterium thermoautotrophicum, M. thermophila, and Mc. jannaschii. Incubation of cell extracts of both M. thermophila and Mc. jannaschii with [hydroxy-(18)O, carboxyl-(18)O(2)]lactate and GTP produced 2-phospho-L-lactate with the same (18)O distribution as found in both the starting lactate and the lactate recovered from the incubation. These results indicate that the carboxyl oxygens are not involved in the phosphorylation reaction. Incubation of Sephadex G-25 purified cell extracts of M. thermophila or Mc. jannaschii with 7,8-didemethyl-8-hydroxy-5-deazariboflavin (Fo), 2-phospho-L-lactate, and GTP or ATP lead to the formation of F(420)-0 (F(420) with no glutamic acids). This transformation was shown to involve two steps: (i) the GTP- or ATP-dependent activation of 2-phospho-L-lactate to either lactyl(2)diphospho-(5')guanosine (LPPG) or lactyl(2)diphospho-(5')adenosine (LPPA) and (ii) the reaction of the resulting LPPG or LPPA with Fo to form F(420)-0 with release of GMP or AMP. Attempts to identify LPPG or LPPA intermediates by incubation of cell extracts with L-[U-(14)C]lactate, [U-(14)C]2-phospho-L-lactate, or [8-(3)H]GTP were not successful owing to the instability of these compounds toward hydrolysis. Synthetically prepared LPPG and LPPA had half-lives of 10 min at 50 degrees C (at pH 7.0) and decomposed into GMP or AMP and 2-phospho-L-lactate via cyclic 2-phospho-L-lactate. No evidence for the functioning of the cyclic 2-phospho-L-lactate in the in vitro biosynthesis could be demonstrated. Incubation of cell extracts of M. thermophila or Mc. jannaschii with either LPPG or LPPA and Fo generated F(420)-0. In summary, this study demonstrates that the formation of the phosphodiester bond in coenzyme F(420) follows a reaction scheme like that found in one of the steps of the DNA ligase reaction and in the biosynthesis of coenzyme B(12) and phospholipids.  相似文献   

4.
Li H  Graupner M  Xu H  White RH 《Biochemistry》2003,42(32):9771-9778
The protein product of the Methanococcus jannaschii MJ0768 gene has been expressed in Escherichia coli, purified to homogeneity, and shown to catalyze the GTP-dependent addition of two l-glutamates to the l-lactyl phosphodiester of 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F(420)-0) to form F(420)-0-glutamyl-glutamate (F(420)-2). Since the reaction is the fifth step in the biosynthesis of coenzyme F(420), the enzyme has been designated as CofE, the product of the cofE gene. Gel filtration chromatography indicates CofE is a dimer. The enzyme has no recognized sequence similarity to any previously characterized proteins. The enzyme has an absolute requirement for a divalent metal ion and a monovalent cation. Among the metal ions tested, a mixture of Mn(2+), Mg(2+), and K(+) is the most effective. CofE catalyzes amide bond formation with the cleavage of GTP to GDP and inorganic phosphate, likely involving the activation of the free carboxylate group of F(420)-0 to give an acyl phosphate intermediate. Evidence for the occurrence of this intermediate is presented. A reaction mechanism for the enzyme is proposed and compared with other members of the ADP-forming amide bond ligase family.  相似文献   

5.
To identify the electron acceptor of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum, we have purified the enzyme to homogeneity. The purified enzyme is absolutely dependent on coenzyme F420 (a 7,8-didemethyl-8-hydroxy-5-deazariboflavin derivative) for activity. Several alternative electron acceptors are ineffectual in the reaction. Changes in the absorption spectra of reaction mixtures indicate that 1.1 mol of coenzyme F420 is reduced per mol of substrate oxidized. The reaction is reversible and the equilibrium favors oxidation of methylenetetrahydromethanopterin.  相似文献   

6.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

7.
Grochowski LL  Xu H  White RH 《Biochemistry》2008,47(9):3033-3037
Coenzyme F 420 is a hydride carrier cofactor functioning in methanogenesis. One step in the biosynthesis of coenzyme F 420 involves the coupling of 2-phospho- l-lactate (LP) to 7,8-didemethyl-8-hydroxy-5-deazaflavin, the F 420 chromophore. This condensation requires an initial activation of 2-phospho- l-lactate through a pyrophosphate linkage to GMP. Bioinformatic analysis identified an uncharacterized archaeal protein in the Methanocaldococcus jannaschii genome, MJ0887, which could be involved in this transformation. The predicted MJ0887-derived protein has domain similarity with other known nucleotidyl transferases. The MJ0887 gene was cloned and overexpressed, and the purified protein was found to catalyze the formation of lactyl-2-diphospho-5'-guanosine from LP and GTP. Kinetic constants were determined for the MJ0887-derived protein with both LP and GTP substrates and are as follows: V max = 3 micromol min (-1) mg (-1), GTP K M (app) = 56 microM, and k cat/ K M (app) = 2 x 10 (4) M (-1) s (-1) and LP K M (app) = 36 microM, and k cat/ K M (app) = 4 x 10 (4) M (-1) s (-1). The MJ0887 gene product has been designated CofC to indicate its involvement in the third step of coenzyme F 420 biosynthesis.  相似文献   

8.
Abstract Cell-free extracts of vegetative mycelia of Streptomyces aureofaciens and Streptomyces rimosus were found to reduce streptomycete-origin 8-hydroxy-5-deazaisoalloxazine derivatives (SF420) using NADPH as a dnor of hydrogen and electrons. 7,8-didemethyl-8-hydroxy-5-deazariboflavin (F0) also was a substrate, although with a lower reaction rate than that for SF420. NADH could not substitute for NADPH. The F420-reductase activity was also observed in homogenates of S. aureofaciens spores.  相似文献   

9.
The membrane-associated coenzyme F420-reducing hydrogenase of Methanobacterium formicicum was purified 87-fold to electrophoretic homogeneity. The enzyme contained alpha, beta, and gamma subunits (molecular weights of 43,000, 36,700, and 28,800, respectively) and formed aggregates (molecular weight, 1,020,000) of a coenzyme F420-active alpha 1 beta 1 gamma 1 trimer (molecular weight, 109,000). The hydrogenase contained 1 mol of flavin adenine dinucleotide (FAD), 1 mol of nickel, 12 to 14 mol of iron, and 11 mol of acid-labile sulfide per mol of the 109,000-molecular-weight species, but no selenium. The isoelectric point was 5.6. The amino acid sequence I-N3-P-N2-R-N1-EGH-N6-V (where N is any amino acid) was conserved in the N-termini of the alpha subunits of the F420-hydrogenases from M. formicicum and Methanobacterium thermoautotrophicum and of the largest subunits of nickel-containing hydrogenases from Desulfovibrio baculatus, Desulfovibrio gigas, and Rhodobacter capsulatus. The purified F420-hydrogenase required reductive reactivation before assay. FAD dissociated from the enzyme during reactivation unless potassium salts were present, yielding deflavoenzyme that was unable to reduce coenzyme F420. Maximal coenzyme F420-reducing activity was obtained at 55 degrees C and pH 7.0 to 7.5, and with 0.2 to 0.8 M KCl in the reaction mixture. The enzyme catalyzed H2 production at a rate threefold lower than that for H2 uptake and reduced coenzyme F420, methyl viologen, flavins, and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Specific antiserum inhibited the coenzyme F420-dependent but not the methyl viologen-dependent activity of the purified enzyme.  相似文献   

10.
The hydride carrier coenzyme F420 contains the unusual chromophore 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO). Microbes that generate F420 produce this FO moiety using a pyrimidine intermediate from riboflavin biosynthesis and the 4-hydroxyphenylpyruvate precursor of tyrosine. The fbiC gene, cloned from Mycobacterium smegmatis, encodes the bifunctional FO synthase. Expression of this protein in Escherichia coli caused the host cells to produce FO during growth, and activated cell-free extracts catalyze FO biosynthesis in vitro. FO synthase in the methanogenic euryarchaeon Methanocaldococcus jannaschii comprises two proteins encoded by cofG (MJ0446) and cofH (MJ1431). Both subunits were required for FO biosynthesis in vivo and in vitro. Cyanobacterial genomes encode homologs of both genes, which are used to produce the coenzyme for FO-dependent DNA photolyases. A molecular phylogeny of the paralogous cofG and cofH genes is consistent with the genes being vertically inherited within the euryarchaeal, cyanobacterial, and actinomycetal lineages. Ancestors of the cyanobacteria and actinomycetes must have acquired the two genes, which subsequently fused in actinomycetes. Both CofG and CofH have putative radical S-adenosylmethionine binding motifs, and pre-incubation with S-adenosylmethionine, Fe2+, sulfide, and dithionite stimulates FO production. Therefore a radical reaction mechanism is proposed for the biosynthesis of FO.Abbreviations AdoMet (SAM) S-adenosyl-l-methionine - Compound 6 5-Amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione - FO 7,8-Didemethyl-8-hydroxy-5-deazariboflavin - HPP 4-Hydroxyphenylpyruvate  相似文献   

11.
The structure of coenzyme F(420) in Mycobacterium smegmatis was examined using proton NMR, amino acid analysis, and HPLC. The two major F(420) structures were shown to be composed of a chromophore identical to that of F(420) from Methanobacterium thermoautotrophicum, with a side chain of a ribityl residue, a lactyl residue and five or six glutamate groups (F(420)-5 and F(420)-6). Peptidase treatment studies suggested that L-glutamate groups are linked by gamma-glutamyl bonds in the side chain. HPLC analysis indicated that Mycobacterium tuberculosis, Mycobacterium bovis BCG, and Mycobacterium fortuitum have F(420)-5 and F(420)-6 as the predominant structures, whereas Mycobacterium avium contains F(420)-5, F(420)-6 and F(420)-7 in significant amounts. 7,8-Didemethyl 8-hydroxy 5-deazariboflavin (FO), an intermediate in F(420) biosynthesis, accounted for about 1-7% of the total deazaflavin in cells. Peptidase treatment of F(420) created F(420) derivatives that may be useful for the assay of enzymes involved in F(420) biosynthesis.  相似文献   

12.
A fluorescent pigment was isolated from the culture fluid of Methanobacterium thermoautotrophicum strain H. This pigment was shown to be 7,8-didemethyl-8-hydroxy-5-deazariboflavin by various spectroscopic and chromatographic techniques. This compound was previously described as the FO acid hydrolysis fragment of coenzyme F420. On the basis of the time of appearance of the pigment in the course of fermentation, it is suggested that this substance may be an over-produced biosynthetic precursor of F420.  相似文献   

13.
The uv-visible spectra of 7,8-didemethyl-8-hydroxy-5-deazaflavin-5'-phosphoryllactyl glutamate (coenzyme F420), a naturally occurring 5-deazaflavin derivative, in three different buffers changed with a rise in temperature; the effect on the extinction coefficient at 420 nm (epsilon 420) was as follows: In phosphate-buffered solutions at pH less than 7.5, the epsilon 420 increased (at pH 5.0 for a temperature shift from 15 to 60 degrees C, delta epsilon 420 was +87%), but between pH 7.5 and 8, epsilon 420 changed very little. At pH greater than 8.0 in phosphate- or borate-buffered solutions, epsilon 420 decreased slightly. In morpholineethanesulfonic acid (Mes)-buffered F420 solutions at pH 5 and 5.5, epsilon 420 changed very little, whereas at pH 6-8, the epsilon 420 decreased. Absorbance of F420 at 401 nm in phosphate buffer at pH 5 to 9 was not significantly affected by temperature. Changes in epsilon 420 due to temperature change corresponded to changes in the pKa of 8-OH of the deazaflavin molecule; studies with adenylated F420 showed that the 8-OH of F420 was responsible for these changes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The di-iron flavoprotein F(420)H(2) oxidase found in methanogenic Archaea catalyzes the four-electron reduction of O(2) to 2H(2)O with 2 mol of reduced coenzyme F(420)(7,8-dimethyl-8-hydroxy-5-deazariboflavin). We report here on crystal structures of the homotetrameric F(420)H(2) oxidase from Methanothermobacter marburgensis at resolutions of 2.25 A, 2.25 A and 1.7 A, respectively, from which an active reduced state, an inactive oxidized state and an active oxidized state could be extracted. As found in structurally related A-type flavoproteins, the active site is formed at the dimer interface, where the di-iron center of one monomer is juxtaposed to FMN of the other. In the active reduced state [Fe(II)Fe(II)FMNH(2)], the two irons are surrounded by four histidines, one aspartate, one glutamate and one bridging aspartate. The so-called switch loop is in a closed conformation, thus preventing F(420) binding. In the inactive oxidized state [Fe(III)FMN], the iron nearest to FMN has moved to two remote binding sites, and the switch loop is changed to an open conformation. In the active oxidized state [Fe(III)Fe(III)FMN], both irons are positioned as in the reduced state but the switch loop is found in the open conformation as in the inactive oxidized state. It is proposed that the redox-dependent conformational change of the switch loop ensures alternate complete four-electron O(2) reduction and redox center re-reduction. On the basis of the known Si-Si stereospecific hydride transfer, F(420)H(2) was modeled into the solvent-accessible pocket in front of FMN. The inactive oxidized state might provide the molecular basis for enzyme inactivation by long-term O(2) exposure observed in some members of the FprA family.  相似文献   

15.
Mechanistic studies have been undertaken on the coenzyme F420 dependent formate dehydrogenase from Methanobacterium formicicum. The enzyme was specific for the si face hydride transfer to C5 of F420 and joins three other F420-recognizing methanogen enzymes in this stereospecificity, consistent perhaps with a common type of binding site for this 8-hydroxy-5-deazariboflavin. While catalysis probably occurs by hydride transfer from formate to the enzyme to generate an EH2 species and then by hydride transfer back out to F420, the formate-derived hydrogen exchanged with solvent protons before transfer back out to F420. The kinetics of hydride transfer from formate revealed that this step is not rate determining, which suggests that the rate-determining step is an internal electron transfer. The deflavo formate dehydrogenase was amenable to reconstitution with flavin analogues. The enzyme was sensitive to alterations in FAD structure in the 6-, 7-, and 8-loci of the benzenoid moiety in the isoalloxazine ring.  相似文献   

16.
2,4,6-Trinitrophenol (picric acid) and 2,4-dinitrophenol were readily biodegraded by the strain Nocardioides simplex FJ2-1A. Aerobic bacterial degradation of these pi-electron-deficient aromatic compounds is initiated by hydrogenation at the aromatic ring. A two-component enzyme system was identified which catalyzes hydride transfer to picric acid and 2,4-dinitrophenol. Enzymatic activity was dependent on NADPH and coenzyme F420. The latter could be replaced by an authentic preparation of coenzyme F420 from Methanobacterium thermoautotrophicum. One of the protein components functions as a NADPH-dependent F420 reductase. A second component is a hydride transferase which transfers hydride from reduced coenzyme F420 to the aromatic system of the nitrophenols. The N-terminal sequence of the F420 reductase showed high homology with an F420-dependent NADP reductase found in archaea. In contrast, no N-terminal similarity to any known protein was found for the hydride-transferring enzyme.  相似文献   

17.
Two putative malate dehydrogenase genes, MJ1425 and MJ0490, from Methanococcus jannaschii and one from Methanothermus fervidus were cloned and overexpressed in Escherichia coli, and their gene products were tested for the ability to catalyze pyridine nucleotide-dependent oxidation and reduction reactions of the following alpha-hydroxy-alpha-keto acid pairs: (S)-sulfolactic acid and sulfopyruvic acid; (S)-alpha-hydroxyglutaric acid and alpha-ketoglutaric acid; (S)-lactic acid and pyruvic acid; and 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid and 1-oxo-1,3,4, 6-hexanetetracarboxylic acid. Each of these reactions is involved in the formation of coenzyme M, methanopterin, coenzyme F(420), and methanofuran, respectively. Both the MJ1425-encoded enzyme and the MJ0490-encoded enzyme were found to function to different degrees as malate dehydrogenases, reducing oxalacetate to (S)-malate using either NADH or NADPH as a reductant. Both enzymes were found to use either NADH or NADPH to reduce sulfopyruvate to (S)-sulfolactate, but the V(max)/K(m) value for the reduction of sulfopyruvate by NADH using the MJ1425-encoded enzyme was 20 times greater than any other combination of enzymes and pyridine nucleotides. Both the M. fervidus and the MJ1425-encoded enzyme catalyzed the NAD(+)-dependent oxidation of (S)-sulfolactate to sulfopyruvate. The MJ1425-encoded enzyme also catalyzed the NADH-dependent reduction of alpha-ketoglutaric acid to (S)-hydroxyglutaric acid, a component of methanopterin. Neither of the enzymes reduced pyruvate to (S)-lactate, a component of coenzyme F(420). Only the MJ1425-encoded enzyme was found to reduce 1-oxo-1,3,4,6-hexanetetracarboxylic acid, and this reduction occurred only to a small extent and produced an isomer of 1-hydroxy-1,3,4,6-hexanetetracarboxylic acid that is not involved in the biosynthesis of methanofuran c. We conclude that the MJ1425-encoded enzyme is likely to be involved in the biosynthesis of both coenzyme M and methanopterin.  相似文献   

18.
The genome of Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) contains two open reading frames, Cc-phr1 and Cc-phr2, which encode putative class II CPD-DNA photolyases. CPD-photolyases repair UV-induced pyrimidine cyclobutane dimers using visible light as an energy source. Expression of Cc-phr2 provided photolyase deficient Escherichia coli cells with photoreactivating activity indicating that Cc-phr2 encodes an active photolyase. In contrast, Cc-phr1 did not rescue the photolyase deficiency. Cc-phr2 was overexpressed in E. coli and the resulting photolyase was purified till apparent homogeneity. Spectral measurements indicated the presence of FAD, but a second chromophore appeared to be absent. Recombinant Cc-phr2 photolyase was found to bind specifically F0 (8-hydroxy-7,8-didemethyl-5-deazariboflavin), which is an antenna chromophore present in various photolyases.. After reconstitution, FAD and F0 were present in approximately equimolar amounts. In reconstituted photolyase the F0 chromophore is functionally active as judged from the increase in the in vitro repair activity. This study demonstrates for the first time that a functional photolyase is encoded by an insect virus, which may have implications for the design of a new generation of baculoviruses with improved performance in insect pest control.  相似文献   

19.
DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans   总被引:10,自引:0,他引:10  
Photoreactivating enzyme, which specifically monomerizes pyrimidine dimers in UV-irradiated DNA, was purified 21,000-fold from the cyanobacterium Anacystis nidulans to apparent homogeneity with 41% overall yield. The enzyme consists of a single protein chain with 53,000 molecular weight. Maximal activity was found at pH 6.2 and 0.1 M NaCl. Purified photoreactivating enzyme exhibits a marked absorption spectrum with a main band in the blue region (maximum 437 nm), a protein band (maximum 266 nm), and a low intensity band above 500 nm. The molar extinction coefficient of native enzyme was estimated 53,000 at 437 nm. The action spectrum for photoreactivation shows maximal activity at 440 nm and correlates closely with the 437-nm absorption band. The enzyme contains two different intrinsic chromophores in equimolar amounts, which were identified as 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO) and (reduced) FAD. The low intensity absorption band of native photoreactivating enzyme exhibits a shoulder at 498 and maxima at 588 and 634 nm. This band is attributed to a neutral FAD semiquinone radical which accounts for the major part of the FAD present in dark equilibrated enzyme. Preillumination at 585 nm bleaches the semiquinone spectrum due to formation of fully reduced FAD, but exposure to air in the dark restores the spectrum completely. On preillumination at 437 nm the disappearance of FAD semiquinone is more rapid, indicating that the photoreduction is sensitized by the 8-hydroxy-5-deazaflavin chromophore. The 8-hydroxy-5-deazaflavin and possibly also the reduced FAD chromophore appear to act as a primary photon acceptor in the photoreactivation process.  相似文献   

20.
Methanosarcina barkeri was able to grow on L-alanine and L-glutamate as sole nitrogen sources. Cell yields were 0.5 g/l and 0.7 g/l (wet wt), respectively. The mechanism of ammonia assimilation inMethanosarcina barkeri strain MS was studied by analysis of enzyme activities. Activity levels of nitrogen-assimilating enzymes in extracts of cells grown on different nitrogen sources (ammonia, 0.05–100 mM; L-alanine, 10 mM; L-glutamate, 10 mM) were compared. Activities of glutamate dehydrogenase, glutamate synthase, glutamine synthetase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase could be measured in cells grown on these three nitrogen sources. Alanine dehydrogenase was not detected under the growth conditions used. None of the measured enzyme activities varied significantly in response to the NH4 + concentration. The length of the poly--glutamyl side chain of F420 derivatives turned out to be independent of the concentration of ammonia in the culture medium.Abbreviations ADH alanine dehydrogenase - FO 7,8-didemethyl-8-hydroxy-5-deazariboflavin - GDH glutamate dehydrogenase - GOGAT glutamate synthase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase - GS glutamine synthetase - H4MPT tetrahydromethanopterin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号