首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Embryogenic cell lines of Picea abies are categorized into three groups (polar, solar, and undeveloped) based on the organization of the somatic embryos within the tissue and the ability of the somatic embryos to proceed through a maturation process when treated with ABA. The polar and the solar types consist of somatic embryos with densely packed embryonic regions subtended by vacuolated suspensors. Both types of tissue regenerate mature somatic embryos when treated with ABA. Almost all mature somatic embryos develop further into shoots or plantlets. The undeveloped type consists of somatic embryos comprised of only a few loosely aggregated cells in their embryonic regions. Mature somatic embryos were not observed with this tissue type.Abbreviations ABA cis-trans abscisic acid - A1 polar type - A2 solar type - B undeveloped type - BA benzyladenine - 2,4-D 2,4 di-chlorophenoxyacetic acid - LP von Arnolds medium (1987)  相似文献   

3.
An embryogenic cell protein from carrot (Daucus carota L.), designated ECP31 for embryogenic cell protein and with a relative mass of 31,000, was purified by sequential column chromatographies. Its apparent relative mass was estimated to be 120,000 by gel filtration. Immunoblotting and immunohistochemical studies showed that ECP31 was preferentially localized in the peripheral cells of clusters of embryogenic cells in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D) and disappeared during the course of somatic embryogenesis in the absence of 2,4-D. ECP31 began to accumulate on the 33rd day after initiation of cultures of hypocotyl segments on Murashige-Skoog medium with 2,4-D, when callus began to appear on the segments. In dry seeds, lower amounts of ECP31 were located throughout the entire zygotic embryos but not in endosperm. ECP31 was also detected in provascular tissue of malformed somatic embryos.  相似文献   

4.
On the occurrence of somatic meiosis in embryogenic carrot cell cultures   总被引:1,自引:0,他引:1  
During the establishment of an embryogenic cell line from a carrot hypocotyl explant, processes closely resembling meiotic divisions are seen. A microdensitometric analysis revealed that the amount of cellular DNA diminished in the majority of cells to the haploid level. However, the diploid level was re-established in a matter of a few days. The genetic consequences of this segregation were studied by analyzing restriction fragment length polymorphisms (RFLP) and randomly amplified polymorphic DNAs (RAPD). The results showed that the great majority of embryos regenerated from segregants and that different segregants had different genetic constitutions.  相似文献   

5.
Totipotency is the ability of a cell to regenerate the entire organism, even after previous differentiation as a specific cell. When totipotency is coupled with active cell division, it was presumed that cell division is essential for this expression. Here, using the stress-induction system of somatic embryos in carrots, we show that cell division is not essential for the expression of totipotency in somatic/embryonic conversion. Morphological and histochemical analyses showed that the cell did not divide during embryo induction. Inhibitors of cell division did not affect the rate of somatic embryo formation. Our results indicate that the newly acquired trait of differentiation appears without cell division, but does not arise with cell division as a newborn cell.  相似文献   

6.
The in vivo activities of arginine and ornithine decarboxylases, key enzymes in the biosynthesis of putrescine and thus polyamines, were measured in three different cell lines of carrot (Daucus carota) during growth and somatic embryogenesis. The activities of these two enzymes differed in the different cell lines in the presence of various levels of auxin (2,4 dichlorophenoxy acetic acid), but was highest during periods of active cell division. During somatic embryo development, the activities of both enzymes were highest during globular stage formation. Thus, both enzymes were found to be active during growth and somatic embryogenesis and could contribute to polyamine biosynthesis.  相似文献   

7.
Kikuchi A  Sanuki N  Higashi K  Koshiba T  Kamada H 《Planta》2006,223(4):637-645
Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10−4 M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses.  相似文献   

8.
Embryogenic suspension cultures of domesticated carrot (Daucus carota L.) are characterized by the presence of proembryogenic masses (PEMs) from which somatic embryos develop under conditions of low cell density in the absence of phytohormones. A culture system, referred to as starting cultures, was developed that allowed analysis of the emergence of PEMs in newly initiated hypocotyl-derived suspension cultures. Embryogenic potential, reflected by the number of FEMs present, slowly increased in starting cultures over a period of six weeks. Addition of excreted, high-molecular-weight, heat-labile cell factors from an established embryogenic culture considerably accelerated the acquisition of embryogenic potential in starting cultures. Analysis of [35S]methionine-labeled proteins excreted into the medium revealed distinct changes concomitant with the acquisition of embryogenic potential in these cultures. Analysis of the pattern of gene expression by in-vitro translation of total cellular mRNA from starting cultures with different embryogenic potential and subsequent separation of the [35S]methionine-labeled products by two-dimensional polyacrylamide gel electrophoresis demonstrated a small number of abundant in-vitro-translation products to be present in somatic embryos and in embryogenic cells but absent in nonembryogenic cells. Several other in-vitro-translation products were present in explants, non-embryogenic and embryogenic cells but were absent in somatic embryos. Hybridization of an embryoregulated complementary-DNA sequence, Dc3, to RNA extracted from starting cultures showed that the corresponding gene is expressed in somatic embryos and PEMs but not in non-embryogenic cells.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - cDNA complementary DNA - PAGE polyacrylamide gel electrophoresis - PEM proembryogenic mass  相似文献   

9.
10.
Embryogenic cultures of cultivated carrot ( Daucus crota cv. Scarlet Nantes) were initiated from seedling hypocotyls on hormone-containing nutrient medium and from wounded zygotic embryos on hormone-free medium. Both of these cultures were maintained with continuous multiplication as unorganized, embryogenic cell masses on hormone-free medium at pH 4.0, containing NH+4 as the sole nitrogen source. When grown on hormone-free medium at pH 4.0, neither culture contained any elongated cells. Virtually all cells were densely cytoplasmic and nearly spherical. Some cells were enlarged, not densely cytoplasmic, but always spherical. When either culture was transferred to an auxin-containing medium at pH 5.8, numerous elongated cells were produced. Elongated cells were observed when either naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid was used, and whether the nitrogen source was NH+4 alone or a combination of NH+4 and NO3. Elongated cells were more abundant when a combined nitrogen source was used. When cultures containing elongated cells were transferred to and multiplied on hormone-free or hormone-containing medium buffered at pH 4.0, all elongated cells disappeared after 2 weeks. No elongated cells were observed in any of the lines tested at pH 4.0. These results clearly show that it was the pH of the culture medium and not the presence or absence of an auxin or the nitrogen source(s) that permitted or prevented cell elongation in the embryogenic cultures tested.  相似文献   

11.
A protocol for obtaining embryogenic cell lines from Arabidopsis   总被引:1,自引:1,他引:0  
Embryogenic cell lines with lasting embryogenic potential can be obtained from somatic embryos induced directly from zygotic embryos of Arabidopsis thaliana , ecotype Columbia. The response to a critical concentration of auxin, which seems to be the all-important factor in the generation of embryogenic cell lines, is exhibited by somatic embryos but not by zygotic ones. The basis for this differential response remains obscure and will be discussed in relation to other systems.  相似文献   

12.
Colchicine changes plant cell shape by disrupting cortical microtubules. This change in cell shape involves the loss of cell rigidity and, subsequently, an increase in cell volume. Dimethylsulfoxide prevents the colchicine-stimulated cell enlargement but cannot maintain the cell shape. We have isolated colchicine-resistant cell lines, col-4 and col-3, which can maintain their cell shape in colchicine at 10−4 and 10−3 M , respectively. Both col-4 and col-3 accumulate a low level of tubulins when grown in colchicine while the wild-type cells do not. Hence the ability to accumulate tubulins correlates with the ability to maintain cell shape. The mechanism of colchicine-resistance of col-4 is not clear but may be associated with the expression of 5 proteins with molecular masses of 64, 45, 29, 28, and 26 kDa. Col-3 cells were isolated from col-4 and presumably shared this mechanism of resistance since they also express these 5 proteins. However, col-3 cells have an additional defect resulting in reduced colchicine uptake.  相似文献   

13.
Cultured carrot cells were treated with a known mutagenic compound, N-methyl-N′-nitro-N-nitroso-guanidine, and plated on a nutrient agar medium. Four variant cell lines whose pigmentation properties differed from stock calluses have been isolated. The contents of major carotenoid components, β-carotene and lycopene, of these cells were determined and compared with those of parent strains.  相似文献   

14.
This review focuses on investigation in acquisition of embryogenic competence during somatic embryogenesis in the last five decades. In tissue culture, differentiated somatic cells acquire embryogenic competence and proliferate as embryogenic cells during the induction phase. These embryogenic cells are important because they differentiate to form somatic embryos at a later time. Various molecular and structural markers for detecting embryogenic cells or enhancing embryogenic competence are summarized and implications of the findings are discussed.  相似文献   

15.
Embryogenic and non-embryogenic cell strains of Daucus carota L. were examined for their protease activity using a wide range of chromogenic synthetic peptides as substrates. High arginine-specific activity was present in all strains, but no protease activity "specific" for embryogenic or non-embryogenic strains could be detected with the substrates tested. The specific protease activity was 5–10 times higher in the non-embryogenic as compared to the embryogenic strain for most tested substrates, and this difference was not due to release of proteases in the latter. All strains showed a decrease in protease activity when cultured in media without 2,4-dichlorophenoxyacetic acid, but the embryos had high protease activity in comparison with the nondifferentiated cell aggregates. In the latter aggregates, hydrolyzing activity towards three of the substrates (H-D-Phe-Pip-Arg- p -nitroanilide, Suc-Ala-Pro-Phe- p -nitro-anilide and Bz-Phe-Val-Arg- p -nitroanilide) was absent, whereas the embryos were able to hydrolyze them.  相似文献   

16.
Summary Cell walls and media were obtained from three kinds of carrot cell culture, namely, embryogenic callus (EC), non-embryogenic callus (NC) and somatic embryos (SE), and analyzed for their sugar content and sugar composition by electrophoresis and gas chromatography. EC formed large cell clusters while NC formed small clusters. Observations under the light microscope revealed that the intercellular contacts in NC were much more limited than those in EC. The analysis of pectic polysaccharides revealed that the level of neutral sugars was higher than that of acidic sugars in EC, while the opposite was true in NC. Gaschromatographic analysis of neutral sugars in pectic fractions revealed that EC and SE were rich in arabinose, while NC was rich in galactose. On the basis of these results, we discuss the possible involvement of neutral sugars, and of arabinose and galactose in particular, in pectic polysaccharides in intercellular contacts.Abbreviations EC embryogenic callus - NC non-embryogenic callus - SE somatic embryo - MS Murashige and Skoog - PAS periodic acid-Schiff s reagent  相似文献   

17.
Somatic embryogenesis of carrots is a typical example of the totipotency of plant cells. However, little is known about the process of change from somatic cells to embryogenic cells. To test the involvement of plant hormones in the acquisition process of embryogenic potency, we investigated the effects of plant growth regulators and their inhibitors on auxin-induced direct somatic embryogenesis of carrots. Gibberellin (GA) inhibited the early stage of embryogenic cell differentiation/development to the globular stage and uniconazole, an inhibitor of GA synthesis, promoted the secondary embryogenesis from the primary embryo. Purine riboside, an anticytokinin, inhibited direct somatic embryogenesis, and this effect was nullified by the application of cytokinin (CK). These results show that GA and CK regulate the early stage of auxin-induced somatic embryogenesis in carrots.  相似文献   

18.
A protease inhibitor with a molecular weight of about 12,800 was purified to electrophoretic homogeneity from Daucus carota cells. The protease inhibitor was heat stable and inhibited trypsin but had no activity toward chymotrypsin or subtilisin. Nonembryogenic as well as embryogenic strains contained the inhibitor in similar amounts, but in the embryogenic strains the trypsin inhibitor was released from the cells and as a result accumulated in high concentrations in the culture medium, whereas no release of the trypsin inhibitor was found during cultivation of the nonembryogenic strains. Very low amounts of acid phosphatase or α-mannosidase activity were found in the culture filtrate of both embryogenic and nonembryogenic strains, which suggest that the release of the inhibitor from embryogenic strains was not due to cell lysis.  相似文献   

19.
Glycoproteins released from carrot cells into culture media were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualized by staining with Coomassie brilliant blue or with the periodic-acid Schiff procedure. The appearance or disappearance of two glycoproteins of Mr 65,000 (GP65) and Mr 57,000 (GP57) was closely related to the formation of somatic embroys. GP65 was released specifically from embryogenic cells cultured in a medium without 2,4-dichlorophenoxyacetic acid, in which they can form somatic embryos. GP57 was released from the same embryogenic cells, if they were cultured in a medium with 2,4-dichlorophenoxyacetic acid, in which they cannot form somatic embryos. Nonembryogenic cells which cannot form somatic embryos, released only GP57.  相似文献   

20.
An upward shift in the concentration of calcium present in the medium during somatic embryogenesis increased the number of embryos produced approximately two-fold. This was observed when embryogenic suspension cells grown in 2,4-D medium with the normal calcium concentration of 10–3 M were transferred to hormone-free medium containing 10–2 M calcium and when embryogenic suspension cells grown in 2,4-D medium containing 10–4 M calcium were transferred to hormone-free medium with 10–3 M calcium. At calcium concentrations between 6·10–3 and 10–2 M globular stage somatic embryos were found in cultures supplemented with 2·10–6 M of 2,4-D indicating that elevated calcium counteracts the inhibitory effect of 2,4-D on somatic embryogenesis. No qualitative changes were found in the pattern of extracellular polypeptides as a result of growth and embryogenesis in media with different calcium concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号