首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Freeze-fracture electron microscopy of propane-jet-frozen samples has been employed to investigate vesicle-mediated secretion and membrane recycling events in carrot (Daucus carota L.) and sycamore maple (Acer pseudoplatanus L.) suspension-culture cells. Stabilization of the cells by means of ultrarapid freezing has enabled us to preserve the cells in a turgid state and to visualize new intermediate membrane configurations related to these events. Indeed, many of the observed membrane configurations, such as flattened membrane vesicles with slit-shaped membrane fusion sites and horseshoe-shaped membrane infoldings, appear to result from the action of turgor forces on the plasma membrane. Individual cells exhibited great variations in numbers and types of membrane configurations postulated to be related to secretion and membrane-recycling events. In the majority of cells, the different membrane profiles displayed a patchy distribution, and within each patch the membrane configurations tended to be of the same stage. This result indicates that secretory events are triggered in domains measuring from 0.1 to about 10 μm in diameter. Based on an extensive analysis of the different membrane configurations seen in our samples, we have formulated the following model of vesicle-mediated secretion in plant cells: Fusion of a secretory vesicle with the plasma membrane leads to the formation of a single, narrow-necked pore that increases in diameter up to about 60 nm. During discharge, the vesicle is flattened, forming a disc-shaped structure perpendicular to the plane of the plasma membrane. As the vesicle is flattened, the pore is converted to a slit, the maximum length of which coincides with the diameter of the flattened vesicle. The flattened vesicle then tips over and concomitantly the plasma-membrane slit becomes curved into a horseshoe-shaped configuration as it extends along the outer margins of the tipped-over vesicle. Some coated pits are present interspersed between the above-mentioned structures, but their numbers appear insufficient to account for an exclusively endocytotic mechanism of membrane recycling. Instead, our micrographs are more consistent with a mixed mode of recycling of membrane components to the cortical endoplamic reticulum and to Golgi cisternae that involves both internalization of membrane by endocytosis and of individual lippid molecules by unknown mechanisms (lipid exchange proteins?). To this end, overall flattening out of the horseshoe-shaped membrane infoldings is accompanied by a retraction and reduction in size of their central, tongue-like structure.  相似文献   

2.
Summary To circumvent the limitations of chemical fixation (CF) and to gain more reliable structural information about higher plant tissues, we have cryofixed root tips ofNicotiana andArabidopsis by high pressure freezing (HPF). Whereas other freezing techniques preserve tissue to a relatively shallow depth, HPF in conjunction with freeze substitution (FS) resulted in excellent preservation of entire root tips. Compared to CF, in tissue prepared by HPF/FS: (1) the plasmalemma and all internal membranes were much smoother and often coated on the cytoplasmic side by a thin layer of stained material, (2) the plasmalemma was appressed to the cell wall, (3) organelle profiles were rounder, (4) the cytoplasmic, mitochondrial, and amyloplast matrices were denser, (5) vacuoles contained electron dense material, (6) microtubules appeared to be more numerous and straighter, with crossbridges observed between them, (7) cisternae of endoplasmic reticulum (ER) were wider and filled with material, (8) Golgi intercisternal elements were more clearly resolved and were observed between both Golgi vesicles and cisternae, and (9) larger vesicles were associated with Golgi stacks. This study demonstrates that HPF/FS can be used to successfully preserve the ultrastructure of relatively large plant tissues without the use of intracellular cryoprotectants.Abbreviations CF chemical fixation - ER endoplasmic reticulum - FF freeze fracture - FS freeze substitution - HPF high pressure freezing Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

3.
ABSTRACT. Fine structural studies of a specialized vesicle system associated with the endoplasmic reticulum (ER) of exo-erythrocytic Plasmodium berghei suggest that this system may be the equivalent of a Golgi apparatus. Patches of ER, randomly distributed in the cytoplasm of developing parasites, are formed of smooth and ribosome-studded cisternae intermingled with each other. The vesicle systems are located between as well as at the edges of ER aggregates and appear to be in different stages of budding from the cisternae. Prolonged osmication reveals distinct staining of the nuclear envelope and ER of the parasites as well as part of the Golgi apparatus of the hepatocytes. However, the small vesicles associated with the parasite's ER are unstained, as are the coated vesicles in the Golgi region of the liver cell. These sites in the parasite cytoplasm seem comparable to the concave surface of the Golgi apparatus in liver cells. The pinched-off vesicles fuse with others to form the prominent peripheral vacuolization characteristic of the nearly mature exo-erythrocytic form. The formation of these peripheral vacuoles and their subsequent fusion with the parasite membrane may be an exocytosis mechanism supplying the rapidly expanding parasite with new plasma membrane material.  相似文献   

4.
Fine structural studies of a specialized vesicle system associated with the endoplasmic reticulum (ER) of exo-erythrocytic Plasmodium berghei suggest that this system may be the equivalent of a Golgi apparatus. Patches of ER, randomly distributed in the cytoplasm of developing parasites, are formed of smooth and ribosome-studded cisternae intermingled with each other. The vesicle systems are located between as well as at the edges of ER aggregates and appear to be in different stages of budding from the cisternae. Prolonged osmication reveals distinct staining of the nuclear envelope and ER of the parasites as well as part of the Golgi apparatus of the hepatocytes. However, the small vesicles associated with the parasite's ER are unstained, as are the coated vesicles in the Golgi region of the liver cell. These sites in the parasite cytoplasm seem comparable to the concave surface of the Golgi apparatus in liver cells. The pinched-off vesicles fuse with others to form the prominent peripheral vacuolization characteristic of the nearly mature exoerythrocytic form. The formation of these peripheral vacuoles and their subsequent fusion with the parasite membrane may be an exocytosis mechanism supplying the rapidly expanding parasite with new plasma membrane material.  相似文献   

5.
The generation of two non-identical membrane compartments via exchange of vesicles is considered to require two types of vesicles specified by distinct cytosolic coats that selectively recruit cargo, and two membrane-bound SNARE pairs that specify fusion and differ in their affinities for each type of vesicles. The mammalian Golgi complex is composed of 6–8 non-identical cisternae that undergo gradual maturation and replacement yet features only two SNARE pairs. We present a model that explains how distinct composition of Golgi cisternae can be generated with two and even a single SNARE pair and one vesicle coat. A decay of active SNARE concentration in aging cisternae provides the seed for a cis trans SNARE gradient that generates the predominantly retrograde vesicle flux which further enhances the gradient. This flux in turn yields the observed inhomogeneous steady-state distribution of Golgi enzymes, which compete with each other and with the SNAREs for incorporation into transport vesicles. We show analytically that the steady state SNARE concentration decays exponentially with the cisterna number. Numerical solutions of rate equations reproduce the experimentally observed SNARE gradients, overlapping enzyme peaks in cis, medial and trans and the reported change in vesicle nature across the Golgi: Vesicles originating from younger cisternae mostly contain Golgi enzymes and SNAREs enriched in these cisternae and extensively recycle through the Endoplasmic Reticulum (ER), while the other subpopulation of vesicles contains Golgi proteins prevalent in older cisternae and hardly reaches the ER.  相似文献   

6.
Summary Wild carrot (Daucus carota L.) cells, grown in suspension culture, were labeled with radioactive precursors and fractionated into constituent membranes to be analyzed for specific radioactivity. Results show rapid incorporation of [3H] leucine into endoplasmic reticulum (ER)-, Golgi apparatus-, and plasma membrane/tonoplast-enriched fractions. The time lag between incorporation into ER and its appearance in Golgi apparatus or plasma membrane/tonoplast were less than 5 minutes. With an average time of 3–4 minutes for cisternal formation estimated from studies with monensin, and an average of 5 cisternae per dictyosome (total transit time of 15–20 minutes), it was not possible to account for early incorporation of radioactivity into plasma membranes by passage of proteins from ER to plasma membrane via the Golgi apparatus. To account for the findings, it would appear that at least some proteins were delivered to the plasma membrane via the first membranes that exited (i.e., mature face vesicles) from the Golgi apparatus post-pulse and that some of these proteins had been translated and inserted into membranes at or near the mature face of the Golgi apparatus.  相似文献   

7.
The presence of adenylate cyclase (AC) in liver Golgi and microsomal fractions from ethanol-treated rats was tested cytochemically using 5'- adenylyl imidodiphosphate (AMP-PNP) lead phosphate method. Parallel biochemical assays showed that rat liver Golgi AC was only partially inhibited by lead: in the presence of 1 mM Pb++ 80% of the enzyme was preserved, while when 2 mM Pb++ was used 25% remained. No cAMP was formed when the AMP-PNP medium was incubated in the presence of 1 or 2 mM Pb++ but in the absence of cell fractions, indicating that at these concentrations Pb++ does not cause the nonenzymatic hydrolysis of AMP- PNP. Therefore, the reaction product observed by cytochemical localization is not due to the nonenzymatic hydrolysis of AMP-PNP by Pb++. In Golgi subfractions, lead phosphate reaction product was widely distributed among Golgi elements: it was seen in association with the majority of the very low density lipoprotein-filled secretory droplets which predominated in the two lightest Golgi fractions (GF1 and GF2) as well as within the majority of the cisternae found in the heaviest Golgi fraction (GF3). In the latter, reaction product was heaviest along the dilated peripheral rims of the cisternae. In all cases, the reaction product was localized to the outside or cytoplasmic face of the Golgi membranes. When microsomes were incubated cytochemically for AC, deposits were found on the cytoplasmic surface of smooth endoplasmic reticulum (ER) membranes, but none were observed on rough ER membranes. The results confirm the biochemical data reported previously indicating the presence of AC in Golgi and smooth microsomal fractions from rat liver and further demonstrate that the activity is indeed indigenous to Golgi elements and not due to plasma membrane contaminants. They also indicate that AC is widely distributed among Golgi and smooth ER elements. Thus, AC is not restricted in its distribution to plasma membranes as usually assumed.  相似文献   

8.
Cytomembranes in first cleavage xenopus embryos   总被引:2,自引:0,他引:2  
Summary The ultrastructure and interrelationships of the Golgi body, endoplasmic reticulum and lipid droplets have been studied in the first cleavage Xenopus embryos. Lipid droplets, usually spherical or sometimes multilobed, did not have a discernible limiting membrane, although some had an incomplete electron dense partition. The Golgi bodies and endoplasmic reticulum were seen continuous with lipid droplets and the profiles indicated a probable formation of these membranes from lipid droplet material. Rough endoplasmic reticulum (ER) mainly consisted of paired tubular cisternae and vesicles containing filamentous material that gave a fringed appearance. The relationships of paired cisternae with the Golgi body suggested a transformation of ER membranes into the Golgi body membranes. In addition, paired ER cisternae showed a close apposition with the limiting membrane of the yolk platelet. Lone ER cisternae that contained moderately electron dense material instead of filaments were also present and showed numerous associated vesicles near the Golgi body. The Golgi body showed several morphological forms including a single fenestrated cisterna, two to four flat or cup-shaped cisternae, or up to seven cisternae, some of which were dilated and similar to fringed ER in appearance. These forms could be different developmental stages of the organelle. Coated vesicles were seen continuous with the cisternae of the Golgi body. A probable route for the assembly of the cell surface material has been proposed.This work was supported by a grant from the Medical Research Council of Canada to one of us (E.J.S.).  相似文献   

9.
Comparative ultrastructural observations reveal that cytoplasmic deletion during spermatogenesis in Sphagnum and other mosses (Bryopsida) has two distinct phases. In young spermatids, Golgi-derived vesicles produce the mucopolysaccharide sheaths in which the gametes are liberated. Golgi bodies, however, play no part in removal of cytoplasm during gamete maturation. Rounding off of the cells during this process results in a 50% reduction in volume. Mid-spermatid stages in Sphagnum are characterised by the sequential loss of Golgi bodies and endoplasmic reticulum (ER) but no further diminution of the cytoplasm. The final stages of nuclear metamorphosis and chromatin condensation, in late spermatids, are marked by the sudden appearance, in the otherwise featureless central cytoplasm, of a membrane vesicle complex (MVC) comprising cisternae, tubules, and smooth and coated vesicles. Following repositioning of the MVC beneath the plasma membrane, rapid shrinkage of the cytoplasm is associated with the presence of vesicle fusion profiles at the cell surface. The MVC is considered to be intimately involved in cytoplasmic breakdown and loss. Acid phosphatase activity can be detected throughout spermatogenesis. Spermatogenous cells and young spermatids possess relatively low levels of the enzyme, restricted to the ER and perinuclear space, but particularly high levels occur in the MVC region of late spermatids of Sphagnum. The deletion process in Bryopsida is much more gradual than that of Sphagnum. Mid-spermatids contain sheets of ER, Golgi with small vesicles, and irregular cisternae associated with coated vesicles. Vacuoles derived either from dilation of the ER or the coated vesicle complexes gradually increase in size and number at the expense of the cytoplasm. During the early stages of chromatin condensation, a large central vacuole opens onto the anterior face of the gametes. Further discharge of vesicles continues throughout gamete maturation. A comparative survey of spermatogenesis in land plants indicates that cytoplasmic deletion is achieved in different ways in different groups. We speculate that the spermatozoids of the common ancestor of archegoniate plants probably possessed large amounts of cytoplasm. The deletion mechanisms may have originated from a contractile vacuole apparatus.  相似文献   

10.
The effects of vinblastine and colchicine on the Golgi apparatus of stomach surface mucoid and absorptive intestinal cells were compared by cytochemical analysis. The two epithelial cells were chosen because of their different specific functions in the formation of secretory granules, the production of lysosomes and the intensity of membrane traffic in the cytoplasm. For the analysis, adult mice were injected with 1 mg/100 g b.w. of vinblastine and 1 mg/100 g b.w. of colchicine. For the demonstration of cis and trans cisternae of the Golgi apparatus, prolonged osmification, thiamine pyrophosphatase and acid phosphatase activity identification were applied. After treatment with vinblastine or colchicine, polarity of stacks in the Golgi apparatus of surface mucoid cells is preserved although the number of cisternae with thiamine pyrophosphatase or acid phosphatase activity decreases. However, the Golgi apparatus of intestinal absorptive cells completely disintegrates and only a few separated cis or trans cisternae can be identified. The main effect seems to be a reduction of vesicles which can be cytochemically identified as parts of the Golgi apparatus and an accumulation of vesicles which probably originate from budding ER. Communication between the ER and the Golgi apparatus seems to be interrupted.  相似文献   

11.
J Saraste  E Kuismanen 《Cell》1984,38(2):535-549
The effect of reduced temperature on synchronized transport of SFV membrane proteins from the ER via the Golgi complex to the surface of BHK-21 cells revealed two membrane compartments where transport could be arrested. At 15 degrees C the proteins could leave the ER but failed to enter the Golgi cisternae and accumulated in pre-Golgi vacuolar elements. At 20 degrees C the proteins passed through Golgi stacks but accumulated in trans-Golgi cisternae, vacuoles, and vesicular elements because of a block affecting a distal stage in transport. Both blocks were reversible, allowing study of the synchronous passage of viral membrane proteins through the Golgi complex at high resolution by immunolabeling in electron microscopy. We propose that membrane proteins enter the Golgi stack via tubular extensions of the pre-Golgi vacuolar elements which generate the Golgi cisternae. The proteins pass across the Golgi apparatus following cisternal progression and enter the post-Golgi vacuolar elements to be routed to the cell surface.  相似文献   

12.
The internalization of plasma membrane components labelled with ConA and peroxidase was investigated in monolayer cultures of rat liver cells. After the labelling procedure, the cells were reincubated with PBS free of both ConA and peroxidase for different time periods between 5 min and 3 h at 37 °C. Ligand-induced redistribution of ConA-binding sites finally resulted in a cap with uropod formation after 2–3 h of reincubation. Simultaneously with redistribution, the cell surface label disappeared through internalization, and a membrane recycling into the Golgi apparatus could be observed. Besides the lamellar Golgi apparatus which exhibited a labelling of the cisternae as a consequence of the membrane recycling, the hypertrophied unlabelled Golgi apparatus could be detected in the same cell. Furthermore, many vesicles formed by the hypertrophied Golgi apparatus were found between them and the plasma membrane and in close proximity to the plasma membrane. Fusion of the vesicles with the plasma membrane could be observed. These morphological findings indicate the possibility that the membrane internalization and the membrane recycling simultaneously effect an enhancement of membrane biogenesis and exocytosis, thus compensating for the membrane removal by internalization.  相似文献   

13.
Baby hamster kidney (BHK) cells were infected with Semliki Forest virus (SFV) and, 2 h later, were treated for 4 h with 10 microM monensin. Each of the four to six flattened cisternae in the Golgi stack became swollen and separated from the others. Intracellular transport of the viral membrane proteins was almost completely inhibited, but their synthesis continued and they accumulated in the swollen Golgi cisternae before the monensin block. In consequence, these cisternae bound large numbers of viral nucleocapsids and were easily distinguished from other swollen cisternae such as those after the block. These intracellular capsid-binding membranes (ICBMs) were not stained by cytochemical markers for endoplasmic reticulum (ER) (glucose-6-phosphatase) or trans Golgi cisternae (thiamine pyrophosphatase, acid phosphatase) but were labeled by Ricinus communis agglutinin I (RCA) in thin, frozen sections. Since this lectin labels only Golgi cisternae in the middle and on the trans side of the stack (Griffiths, G., R. Brands, B. Burke, D. Louvard, and G. Warren, 1982, J. Cell Biol., 95:781-792), we conclude that ICBMs are derived from Golgi cisternae in the middle of the stack, which we term medial cisternae. The overall movement of viral membrane proteins appears to be from cis to trans Golgi cisternae (see reference above), so monensin would block movement from medial to the trans cisternae. It also blocked the trimming of the high-mannose oligosaccharides bound to the viral membrane proteins and their conversion to complex oligosaccharides. These functions presumably reside in trans Golgi cisternae. This is supported by data in the accompanying paper, in which we also show that fatty acids are covalently attached to the viral membrane proteins in the cis or medial cisternae. We suggest that the Golgi stack can be divided into three functionally distinct compartments, each comprising one or two cisternae. The viral membrane proteins, after leaving the ER, would all pass in sequence from the cis to the medial to the trans compartment.  相似文献   

14.
Sec7p directs the transitions required for yeast Golgi biogenesis   总被引:6,自引:0,他引:6  
Endoplasmic reticulum (ER)-to-Golgi traffic in yeast proceeds by the maturation of membrane compartments from post-ER vesicles to intermediate small vesicle tubular clusters (VTCs) to Golgi nodular membrane networks (Morin-Ganet et al., Traffic 2000; 1: 56–68). The balance between ER and Golgi compartments is maintained by COPII- and COPI-mediated anterograde and retrograde traffic, which are dependent on Sec7p and ARF function. The sec7-4 temperature-sensitive allele is a mutation in the highly conserved Sec7 domain (Sec7d) found in all ARF-guanine nucleotide exchange factor proteins. Post-ER trafficking is rapidly inactivated in sec7-4 mutant yeast at the restrictive temperature. This conditional defect prevented the normal production of VTCs and instead generated Golgi-like tubes emanating from the ER exit sites. These tubes progressively developed into stacked cisternae defining the landmark sec7 mutant phenotype. Consistent with the in vivo results, a Sec7d peptide inhibited ER-to-Golgi transport and displaced Sec7p from its membrane anchor in vitro . The similarities in the consequences of inactivating Sec7p or ARFs in vivo was revealed by genetic disruption of yeast ARFs or by addition of brefeldin A (BFA) to whole cells. These treatments, as in sec7-4 yeast, affected the morphology of membrane compartments in the ER-Golgi transition. Further evidence for Sec7p involvement in the transition for Golgi biogenesis was revealed by in vitro binding between distinct domains of Sec7p with ARFs, COPI and COPII coat proteins. These results suggest that Sec7p coordinates membrane transitions in Golgi biogenesis by directing and scaffolding the binding and disassembly of coat protein complexes to membranes, both at the VTC transition from ER exit sites to form Golgi elements and for later events in Golgi maturation.  相似文献   

15.
We describe a scheme for the purification of the nonclathrin-coated vesicles that mediate transport of proteins between Golgi cisternae and probably from ER to Golgi. These "Golgi-derived coated vesicles" accumulate when Golgi membranes are incubated with ATP and cytosol in the presence of GTP gamma S, a compound that blocks vesicle fusion. The coated vesicles dissociate from the Golgi cisternae in high salt and can then be purified by employing differential and density gradient centrifugation. Golgi-derived coated vesicles have a putative polypeptide composition that is distinct from both cytosol and Golgi membranes, as well as from that of clathrin-coated vesicles.  相似文献   

16.
Freeze-fracture and thin sections were performed on human bone marrow of chronic megakaryocytic-granulocytic myelosis (CMGM) to study the three-dimensional fine structure and maturation of normal and atypical megakaryocytes and thrombocytes. In the many normally maturing megakaryocytes the development of the demarcation membrane system (DMS) was best investigated by comparison of thin sections with freeze-fracture replicas. The DMS shows no connections with the Golgi apparatus or rough-surfaced endoplasmic reticulum, but originates from tubular infoldings of the plasma membrane. These infoldings are always in continuity with the extracellular space and form an intracellular membranous pool by branching and coalescing of flattened tubules from which finally the perforated cisternae of the DMS arise. Freeze-fracture of the normal thrombocytes confirms earlier findings. The abnormal giant platelets seen in CMGM display extensive areas of smooth membranes of a spongy structure consisting of dense tubules surrounded by the labyrinth of the surface-connected system. Their physiological significance in these atypical platelets remains unsolved.  相似文献   

17.
 Newly synthesized proteins destined for delivery to the cell surface are inserted cotranslationally into the endoplasmic reticulum (ER) and, after their correct folding, are transported out of the ER. During their transport to the cell surface, cargo proteins pass through the various cisternae of the Golgi apparatus and, in the trans-most cisternae of the stack, are sorted into constitutive secretory vesicles that fuse with the plasma membrane. Simultaneously with anterograde protein transport, retrograde protein transport occurs within the Golgi complex as well as from the Golgi back to the ER. Vesicular transport within the early secretory pathway is mediated by two types of non-clathrin coated vesicles: COPI- and COPII-coated vesicles. The formation of these carrier vesicles depends on the recruitment of cytosolic coat proteins that are thought to act as a mechanical device to shape a flattened donor membrane into a spherical vesicle. A general molecular machinery that mediates targeting and fusion of carrier vesicles has been identified as well. Beside a general overview of the various coat structures known today, we will discuss issues specifically related to the biogenesis of COPI-coated vesicles: (1) a possible role of phospholipase D in the formation of COPI-coated vesicles; (2) a functional role of a novel family of transmembrane proteins, the p24 family, in the initiation of COPI assembly; and (3) the direction COPI-coated vesicles may take within the early secretory pathway. Moreover, we will consider two alternative mechanisms of protein transport through the Golgi stack: vesicular transport versus cisternal maturation. Accepted: 24 October 1997  相似文献   

18.
Golgi membranes are absorbed into and reemerge from the ER during mitosis   总被引:34,自引:0,他引:34  
Quantitative imaging and photobleaching were used to measure ER/Golgi recycling of GFP-tagged Golgi proteins in interphase cells and to monitor the dissolution and reformation of the Golgi during mitosis. In interphase, recycling occurred every 1.5 hr, and blocking ER egress trapped cycling Golgi enzymes in the ER with loss of Golgi structure. In mitosis, when ER export stops, Golgi proteins redistributed into the ER as shown by quantitative imaging in vivo and immuno-EM. Comparison of the mobilities of Golgi proteins and lipids ruled out the persistence of a separate mitotic Golgi vesicle population and supported the idea that all Golgi components are absorbed into the ER. Moreover, reassembly of the Golgi complex after mitosis failed to occur when ER export was blocked. These results demonstrate that in mitosis the Golgi disperses and reforms through the intermediary of the ER, exploiting constitutive recycling pathways. They thus define a novel paradigm for Golgi genesis and inheritance.  相似文献   

19.
S Conchon  X Cao  C Barlowe    H R Pelham 《The EMBO journal》1999,18(14):3934-3946
Traffic through the yeast Golgi complex depends on a member of the syntaxin family of SNARE proteins, Sed5p, present in early Golgi cisternae. Sft2p is a non-essential tetra-spanning membrane protein, found mostly in the late Golgi, that can suppress some sed5 alleles. We screened for mutations that show synthetic lethality with sft2 and found one that affects a previously uncharacterized membrane protein, Got1p, as well as new alleles of sed5 and vps3. Got1p is an evolutionarily conserved non-essential protein with a membrane topology similar to that of Sft2p. Immunofluorescence and subcellular fractionation indicate that it is present in early Golgi cisternae. got1 mutants, but not sft2 mutants, show a defect in an in vitro assay for ER-Golgi transport at a step after vesicle tethering to Golgi membranes. In vivo, inactivation of both Got1p and Sft2p results in phenotypes ascribable to a defect in endosome-Golgi traffic, while their complete removal results in an ER-Golgi transport defect. Thus the presence of either Got1p or Sft2p is required for vesicle fusion with the Golgi complex in vivo. We suggest that Got1p normally facilitates Sed5p-dependent fusion events, while Sft2p performs a related function in the late Golgi.  相似文献   

20.
The endoplasmic reticulum (ER) of animal cells is a single, dynamic, and continuous membrane network of interconnected cisternae and tubules spread out throughout the cytosol in direct contact with the nuclear envelope. During mitosis, the nuclear envelope undergoes a major rearrangement, as it rapidly partitions its membrane-bound contents into the ER. It is therefore of great interest to determine whether any major transformation in the architecture of the ER also occurs during cell division. We present structural evidence, from rapid, live-cell, three-dimensional imaging with confirmation from high-resolution electron microscopy tomography of samples preserved by high-pressure freezing and freeze substitution, unambiguously showing that from prometaphase to telophase of mammalian cells, most of the ER is organized as extended cisternae, with a very small fraction remaining organized as tubules. In contrast, during interphase, the ER displays the familiar reticular network of convolved cisternae linked to tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号