首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Park JA  Ha SK  Kang TH  Oh MS  Cho MH  Lee SY  Park JH  Kim SY 《Life sciences》2008,82(25-26):1217-1223
Recent studies have shown that apigenin not only inhibits bone resorption by osteoclasts but also induces osteoclast apoptosis. However, the influence of apigenin on osteoporosis in animals is relatively unknown. The purpose of this study was to examine the bone-protective effects of apigenin in estrogen-deficient ovariectomized rats. Three-month-old female Sprague-Dawley rats were either sham-operated or ovariectomized and fed AIN-93G diet for 7 weeks to induce bone loss. To confirm bone loss, we used a newly developed non-invasive technique involving zoom-in micro-computed tomography. Apigenin was administered at a dose of 10 mg/kg three times a week for 15 weeks. Our results indicate that apigenin not only increased the mineral content and density of the trabecular bone at the neck of the left femur, but also decreased body weight and dietary consumption. Moreover, our biochemical results indicate that apigenin has a positive effect on bone turnover. The present data suggest that apigenin should be considered for use in the treatment of osteoporosis.  相似文献   

2.
The objective of the present study was to systematically explore the effects of 32K Da protein (32KP) on postmenopausal osteoporosis. Eighty 3-mo-old female Sprague-Dawley rats were employed and randomly divided into one sham-operated group (SHAM) and five ovariectomy (OVX) subgroups as OVX (control), OVX with 17-ethinylestradiol (E2, 25 g/kg/day), OVX with 32KP of graded doses (50, 50, or 150 mg/kg/day). 32KP or E2 diet was fed on week 4 after operation, for 16 weeks. Bone mass, bone turnover and strength were evaluated by dual-energy X-ray absorptiometry (DEXA), biochemical markers and three-point bending test, respectively. Femur marrow cavity was observed by light microscopy via hematoxylin-eosin staining. It is observed that different dosage treatment of 32KP increased the body weight and prevented the loss of bone mass induced by OVX. The prevention effect against bone loss was presumably due to the altering of the rate of bone remodeling. The bone mineral density and bone calcium content in OVX rats were lower than that in the control group, suggesting that 32KP was able to prevent significant bone loss. In addition, the data from three point bending test and femur sections showed that 32KP treatment enhanced bone strength and reduced the marrow cavity of the femur in OVX rats. In the serum and urine assay, 32KP decreased urinary deoxypyridinoline and calcium concentrations; however, serum alkaline phosphatase activities were not inhibited. It suggested that amelioration of bone loss was changed via inhibition of bone reabsorption. Our findings indicated that 32KP might be a potential alternative drug for the prevention and treatment of postmenopausal osteoporosis.  相似文献   

3.
Several animal and clinical studies have shown that phytoestrogens, plant-derived estrogenic compounds, can be useful in treating postmenopausal osteoporosis. Phytoestrogens and phytoestrogen-containing plants are currently under active investigation for their role in estrogen-related disorders. The present study deals with anti-osteoporotic evaluation of phytoestrogen-rich plant Cuminum cyminum, commonly known as cumin. Adult Sprague-Dawley rats were bilaterally ovariectomized (OVX) and randomly assigned to 3 groups (10 rats/group). Additional 10 animals were sham operated. OVX and sham control groups were orally administered with vehicle while the other two OVX groups were administered 0.15 mg/kg estradiol and 1 g/kg of methanolic extract of Cuminum cyminum fruits (MCC) in two divided doses for 10 weeks. At the end of the study blood, bones and uteri of the animals were collected. Serum was evaluated for calcium, phosphorus, alkaline phosphatase and tartarate resistant acid phosphatase. Bone density, ash density, mineral content and mechanical strength of bones were evaluated. Scanning electron microscopic (SEM) analysis of bones (tibia) was performed. Results were analyzed using ANOVA and Tukeys multiple comparison test. MCC (1 g/kg, p.o.) significantly reduced urinary calcium excretion and significantly increased calcium content and mechanical strength of bones in comparison to OVX control. It showed greater bone and ash densities and improved microarchitecture of bones in SEM analysis. Unlike estradiol it did not affect body weight gain and weight of atrophic uterus in OVX animals. MCC prevented ovariectomy-induced bone loss in rats with no anabolic effect on atrophic uterus. The osteoprotective effect was comparable with estradiol.  相似文献   

4.
Findings from animal studies have suggested that bone remodeling is under beta-adrenergic control. However, the level of adrenergic inhibition required to achieve the most favorable effects on the skeleton remains unknown. To address this question, we compared the effects of low (0.1 mg/Kg/day), medium (5 mg/Kg/day) or high (20 mg/Kg/day) doses of propranolol given 5 days per week for 10 weeks in ovariectomized (OVX) rats. Characteristics of bone microarchitecture, biomechanical properties and bone turnover were investigated, whilst heart functions were assessed by echocardiography and catheterization of the left ventricle. We first confirmed the expression of Adrbeta2R and the absence of Adrbeta1R on osteoblasts by PCR and confocal microscopy. We then showed that low dose propranolol prevented OVX induced bone loss by increasing bone formation (+30% of MAR vs. placebo, P = 0.01) and decreasing bone resorption (-52% of osteoclast surface on bone surface vs. placebo, P = 0.01). Consequently, rats receiving 0.1 mg/kg/day propranolol displayed higher stress (+27%), intrinsic energy (+28.7%) and Young's Modulus in compression versus placebo (all, P < 0.05). No significant effects on heart hemodynamic parameters were found in rats receiving this dose. In contrast, medium and high doses of propranolol had a negative effect on heart functions but no significant protective effects on bone mass in ovariectomized rats. These results, consistent with the dominant nature of the high bone mass phenotype and normal heart function of Adrbeta2R-deficient mice, suggest that low doses of beta-blockers may have a therapeutic utility in the treatment of osteoporosis with high selectivity for bone tissues.  相似文献   

5.
Estrogen deficiency results in accelerated bone turnover with a net increase in bone resorption. Subcutaneous administration of leptin attenuates bone loss in ovariectomized (ovx) rats by reducing bone resorption. However, in addition to its direct beneficial effects, leptin has been reported to have indirect (central nervous system-mediated) antiosteogenic effects on bone, which may limit the efficacy of elevated serum leptin to prevent estrogen deficiency-associated bone loss. The present study evaluated the long-term effects of increased hypothalamic leptin transgene expression, using recombinant adeno-associated virus-leptin (rAAV-Lep) gene therapy, on bone mass, architecture, and cellular endpoints in sexually mature ovx Sprague-Dawley rats. Ovx rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either rAAV-Lep or rAAV-GFP (control vector encoding green fluorescent protein) and maintained for 10 weeks. Additional controls consisted of ovary-intact rats and ovx rats pair-fed to rAAV-Lep rats. Lumbar vertebrae were analyzed by micro-computed tomography and tibiae by histomorphometry. Cancellous bone volume was lower and osteoclast perimeter, osteoblast perimeter, and bone marrow adipocyte density were greater in ovx rats compared to ovary-intact controls. In contrast, differences among ovx groups were not detected for any endpoint evaluated. In conclusion, whereas estrogen deficiency resulted in marked cancellous osteopenia, increased bone turnover and marrow adiposity, increasing hypothalamic leptin transgene expression in ovx rats had neither detrimental nor beneficial effects on bone mass, architecture, or cellular endpoints. These findings demonstrate that the antiresorptive effects of subcutaneous leptin administration in ovx rats are mediated through leptin targets in the periphery.  相似文献   

6.
Curcumin has anti-oxidative activity. In view of the increasing evidence for a biochemical link between increased oxidative stress and reduced bone density we hypothesized that curcumin might increase bone density by elevating antioxidant activity in some target cell type. We measured bone density by Micro-CT, enzyme expression levels by quantitative PCR or enzyme activity, and osteoclast (OC) formation by tartrate-resistant acid phosphatase staining. The bone mineral density of the femurs of curcumin-administered mice was significantly higher than that of vehicle-treated mice after ovariectomy (OVX) and this was accompanied by reduced amounts of serum collagen-type I fragments, which are markers of bone resorption. Curcumin suppressed OC formation by increasing receptor activator of nuclear factor-κB ligand (RANKL)-induced glutathione peroxidase-1, and reversed the stimulatory effect of homocysteine, a known H(2) O(2) generator, on OC formation by restoring Gpx activity. Curcumin generated an aberrant RANKL signal characterized by reduced expression of nuclear factor of activated T cells 2 (NFAT2) and attenuated activation of mitogen-activated protein kinases (ERK, JNK, and p38). Curcumin thus inhibited OVX-induced bone loss, at least in part by reducing osteoclastogenesis as a result of increased antioxidant activity and impaired RANKL signaling. These findings suggest that bone loss associated with estrogen deficiency could be attenuated by curcumin administration.  相似文献   

7.
SIR2 protein, an NAD-dependent deacetylase, is localized to nucleus and is involved in life span extension by calorie restriction in yeast. In mammals, among the seven SIR2 homologues (SIRT1-7), SIRT3, 4, and 5 are localized to mitochondria. As SIRT5 mRNA levels in liver are increased by fasting, the physiological role of SIRT5 was investigated in liver of SIRT5-overexpressing transgenic (SIRT5 Tg) mice. We identified carbamoyl phosphate synthetase 1 (CPS1), a key enzyme of the urea cycle that catalyzes condensation of ammonia with bicarbonate to form carbamoyl phosphate, as a target of SIRT5 by two-dimensional electrophoresis comparing mitochondrial proteins in livers of SIRT5 Tg and wild-type mice. CPS1 protein was more deacetylated and activated in liver of SIRT5 Tg mice than in wild-type. In addition, urea production was upregulated in hepatocytes of SIRT5 Tg mice. These results agree with those of a previous study using SIRT5 knockout (KO) mice. Because ammonia generated during fasting is toxic, SIRT5 protein might play a protective role by converting ammonia to non-toxic urea through deacetylation and activation of CPS1.  相似文献   

8.

Background

Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied.

Methodology and Principal Findings

In this report, we show that feeding a high quality diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only between postnatal day 20 (PND20) and PND34 prevented ovariectomy (OVX)-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation.

Conclusions/Significance

These results indicate: 1) a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2) the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.  相似文献   

9.
Melatonin was orally given to rats at the dosage of 0.75 mg/rat/day for 7 days and challenged on the day 7 with a single toxic dose of indomethacin (20 mg/kg, intramuscularly) to test either protection afforded by melatonin against indomethacin-induced oxidative tissue damage or effects of repeated administration of this hormone on some testicular metabolic parameters. The results showed increased lipid peroxidation, as evidenced by the formation of thiobarbituric acid reactive substances, accompanied by non-significantly decreased glutathione content in the testis of rats treated with indomethacin. However, prior administration of melatonin failed to prevent indomethacin-induced testicular lipid peroxidation. No change in the production of lipid peroxidation and glutathione was observed as well after treatment with melatonin alone. Meanwhile, exogenous melatonin inhibited testicular levels of total lipid, total protein, and activity of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. All treated rats exhibited unchanged activity of both acid phosphatase and lactate dehydrogenase. The results indicated inability of oral administration of melatonin to prevent some of the oxidative damaging effects of indomethacin in the rat testis. In addition, the study provided an evidence that melatonin has an inhibitory action on the testicular metabolism in adult rats and thereby suggests a possible role of this hormone in modulating functions of rat testis.  相似文献   

10.
11.
Previous studies have indicated that the plasma concentration of nitric oxide synthase inhibitor, asymmetric dimethylarginine (ADMA), was increased in postmenopausal women. In the study reported here, we tested the relationship between the decrease of bone mineral density (BMD) and ADMA concentration in ovariectomized (OVX) rats. Ovariectomized rats at 8 months of age were treated with 17beta-estradiol (10 or 30 microg/kg of body weight/day, s.c.) or L-arginine (300 mg/kg/day, i.p.) for 12 weeks (n = 10 for each group). Pre- and posttreatment total BMD, posttreatment plasma nitrite/nitrate and ADMA concentrations, and posttreatment BMD in the lumbar part of the spine (L4-L6), femurs, and tibias were examined. Ovariectomy caused a significant decrease in several BMD indexes, which was reversed by estrogen treatment (P < 0.05). Plasma nitrite/nitrate concentration was significantly decreased in OVX rats, but was restored by estrogen treatment (P < 0.05). There were no differences in the plasma concentration of ADMA in OVX or estrogen-treated rats. L-Arginine had no effect on plasma nitrite/nitrate concentration and BMD in OVX rats. These results suggest that ovariectomy does not influence the plasma concentration of ADMA, and that ADMA is not involved in ovariectomy-induced osteopenia in rats.  相似文献   

12.
Previously, we reported significant bone mineral density (BMD) loss in postmenopausal women after modest weight loss. It remains unclear whether the magnitude of BMD change in response to weight loss is appropriate (i.e., proportional to weight loss) and whether BMD is recovered with weight regain. We now report changes in BMD after a 1‐year follow‐up. Subjects (n = 23) in this secondary analysis were postmenopausal women randomized to placebo as part of a larger trial. They completed a 6‐month exercise‐based weight loss program and returned for follow‐up at 18 months. Dual‐energy X‐ray absorptiometry (DXA) was performed at baseline, 6, and 18 months. At baseline, subjects were aged 56.8 ± 5.4 years (mean ± s.d.), 10.0 ± 9.2 years postmenopausal, and BMI was 29.6 ± 4.0 kg/m2. They lost 3.9 ± 3.5 kg during the weight loss intervention. During follow‐up, they regained 2.9 ± 3.9 kg. Six months of weight loss resulted in a significant decrease in lumbar spine (LS) (?1.7 ± 3.5%; P = 0.002) and hip (?0.04 ± 3.5%; P = 0.03) BMD that was accompanied by an increase in a biomarker of bone resorption (serum C‐terminal telopeptide of type I collagen, CTX: 34 ± 54%; P = 0.08). However, weight regain was not associated with LS (0.05 ± 3.8%; P = 0.15) or hip (?0.6 ± 3.0%; P = 0.81) bone regain or decreased bone resorption (CTX: ?3 ± 37%; P = 0.73). The findings suggest that BMD lost during weight reduction may not be fully recovered with weight regain in hormone‐deficient, postmenopausal women. Future studies are needed to identify effective strategies to prevent bone loss during periods of weight loss.  相似文献   

13.
14.
A link between macrophage migration inhibitory factor (MIF) and estrogen has recently emerged. We examined the involvement of MIF in osteoporotic changes in bone after ovariectomy (OVX), and revealed that MIF-deficient mice (MIF-KO) were completely protected from this phenomenon. The increase in osteoclast number per bone surface and serum IL-1β levels, which were observed in wild-type mice after OVX, did not occur in MIF KO. Our data suggest that MIF plays an important role in the pathogenesis of postmenopausal osteoporosis, and could be a novel target for the treatment of this disease.  相似文献   

15.
Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.  相似文献   

16.
Although bone is composed primarily of extracellular matrix (ECM), the dynamic role that the ECM plays in regulating bone remodeling secondary to estrogen loss is relatively unexplored. Previous studies have shown that mice deficient in the matricellular protein thrombospondin-2 (TSP2-null) form excess endocortical bone; thus, we postulated that enhanced bone formation in TSP2-null mice could protect against ovariectomy (OVX)-induced bone loss. Wild-type (WT) OVX mice showed a significant loss of both midfemoral endocortical and proximal tibial trabecular bone, but OVX did not significantly alter TSP2-null bone. TSP2-null mice showed an increase in bone formation, as indicated by a 70% increase in serum osteocalcin two weeks post OVX and a two-fold increase in bone formation rate (BFR) five weeks post OVX as measured by dynamic histomorphometry. WT animals showed only a 20% increase in serum osteocalcin at two weeks and no change in BFR at five weeks. This increase in bone formation in TSP2-null OVX mice was accompanied by a three-fold increase in osteoprogenitor number. Although these results provide a partial explanation for the maintenance of bone geometry post-OVX, TSP2-null mice five weeks post-OVX also showed a significantly lower level of bone resorption than OVX WT mice, as determined by serum levels of the amino-terminal telopeptide of type I collagen (NTx). We conclude that the absence of TSP2 protects against OVX-induced bone loss by two complementary processes: increased formation and decreased resorption.  相似文献   

17.
People with diabetes experience morbidity and mortality from unregulated microvascular remodeling, which may be linked to hyperglycemia. Elevated glucose leads to extracellular matrix collagen glycation, which delays endothelial capillary-like tube formation in vitro. Glucose also increases endothelial cell fibroblast growth factor-2 (FGF-2) release and extracellular matrix storage, which should increase tube formation. In this study, we determined if FGF-2 could restore plasminogen system activity and angiogenic function in endothelial cells on glycated collagen. Human umbilical vein endothelial cells cultured on native or glycated collagen substrates were stimulated with FGF-2. Plasminogen system activity, cell migration, and capillary-like tube formation were measured, along with plasminogen system protein and mRNA levels. Glycated collagen decreased endothelial cell plasminogen system activity, cell migration, and tube length. FGF-2 did not restore plasminogen system activity or tube formation in cells on glycated collagen, despite decreasing plasminogen activator inhibitor-1 (PAI-1) protein level. We now show that PAI-1 binds to glycated collagen, which may localize PAI-1 to the extracellular matrix. These data suggest that FGF-2 may not restore angiogenic functions in endothelial cells on glycated collagen due to PAI-1 bound to glycated collagen.  相似文献   

18.
Osteoporosis is a disease in which bone mineral density decreases due to abnormal activity of osteoclasts, and is commonly found in post-menopausal women who have decreased levels of female hormones. Sphingosylphosphorylcholine (SPC) is an important biological lipid that can be converted to sphingosine-1-phosphate (S1P) by autotaxin. S1P is known to be involved in osteoclast activation by stimulating osteoblasts, but bone regulation by SPC is not well understood. In this study, we found that SPC strongly inhibits RANKL-induced osteoclast differentiation. SPC-induced inhibitory effects on osteoclast differentiation were not affected by several antagonists of S1P receptors or pertussis toxin, suggesting cell surface receptor independency. However, SPC inhibited RANKL-induced calcineurin activation and subsequent NFATc1 activity, leading to decrease of the expression of Trap and Ctsk. Moreover, we found that bone loss in an experimental osteoporosis mouse model was recovered by SPC injection. SPC also blocked ovariectomy-induced body weight increase and Nfatc1 gene expression in mice. We also found that SPC inhibits RANKL-induced osteoclast differentiation in human macrophages. Since currently available treatments for osteoporosis, such as administration of female hormones or hormone receptor modulators, show serious side effects, SPC has potential as a new agent for osteoporosis treatment.  相似文献   

19.
Flavonoids, a group of polyphenolic compounds abundant in plants, are known to prevent bone loss in ovariectomized (OVX) animal models. Inhibition of osteoclast differentiation and bone resorption is considered as an effective therapeutic approach in the treatment of postmenopausal bone loss. Luteolin, a plant flavonoid, has potent anti-inflammatory properties both in vivo and vitro. In this study, we found that luteolin markedly decreased the differentiation of both bone marrow mononuclear cells and Raw264.7 cells into osteoclasts. Luteolin also inhibited the bone resorptive activity of differentiated osteoclasts. We further investigated the effects of luteolin on ovariectomy-induced bone loss using micro-computed tomography, biomechanical tests and serum markers assay for bone remodeling. Oral administration of luteolin (5 and 20 mg/kg per day) to OVX mice caused significant increase in bone mineral density and bone mineral content of trabecular and cortical bones in the femur as compared to those of OVX controls, and prevented decreases of bone strength indexes induced by OVX surgery. Serum biochemical markers assays revealed that luteolin prevents OVX-induced increases in bone turnover. These data strongly suggest that luteolin has the potential for prevention of bone loss in postmenopausal osteoporosis by reducing both osteoclast differentiation and function.  相似文献   

20.
Glucocorticoids and β(2)-adrenergic receptor agonists are the most commonly used drugs in the treatment of asthma. Both therapies are potentially dangerous to the skeletal system. The aim of the present study was to investigate the effects of fenoterol, a β(2)-receptor agonist, on the development of bone changes induced by glucocorticoid (prednisolone) administration in mature male rats. The experiments were carried out on 24-week-old male Wistar rats. The effects of prednisolone 21-hemisuccinate sodium salt (7 mg/kg s.c. daily) or/and fenoterol hydrobromide (1.4 mg/kg i.p. daily), administered for 4 weeks, on the skeletal system were studied. Bone turnover markers, geometric parameters, mass, mass of bone mineral in the tibia, femur and L-4 vertebra, bone histomorphometric parameters and mechanical properties of tibial metaphysis, femoral diaphysis and femoral neck were determined. Both prednisolone and fenoterol had damaging effects on the skeletal system of mature male rats. However, concurrent administration of fenoterol and prednisolone did not result in the intensification of the deleterious skeletal effect of either drug administered separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号