首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exercise-induced intrapulmonary arteriovenous shunting, as detected by saline contrast echocardiography, has been demonstrated in healthy humans. We have previously suggested that increases in both pulmonary pressures and blood flow associated with exercise are responsible for opening these intrapulmonary arteriovenous pathways. In the present study, we hypothesized that, although cardiac output and pulmonary pressures would be higher in hypoxia, the potent pulmonary vasoconstrictor effect of hypoxia would actually attenuate exercise-induced intrapulmonary shunting. Using saline contrast echocardiography, we examined nine healthy men during incremental (65 W + 30 W/2 min) cycle exercise to exhaustion in normoxia and hypoxia (fraction of inspired O(2) = 0.12). Contrast injections were made into a peripheral vein at rest and during exercise and recovery (3-5 min postexercise) with pulmonary gas exchange measured simultaneously. At rest, no subject demonstrated intrapulmonary shunting in normoxia [arterial Po(2) (Pa(O(2))) = 98 +/- 10 Torr], whereas in hypoxia (Pa(O(2)) = 47 +/- 5 Torr), intrapulmonary shunting developed in 3/9 subjects. During exercise, approximately 90% (8/9) of the subjects shunted during normoxia, whereas all subjects shunted during hypoxia. Four of the nine subjects shunted at a lower workload in hypoxia. Furthermore, all subjects continued to shunt at 3 min, and five subjects shunted at 5 min postexercise in hypoxia. Hypoxia has acute effects by inducing intrapulmonary arteriovenous shunt pathways at rest and during exercise and has long-term effects by maintaining patency of these vessels during recovery. Whether oxygen tension specifically regulates these novel pathways or opens them indirectly via effects on the conventional pulmonary vasculature remains unclear.  相似文献   

2.
We aimed to assess the influence of lateral decubitus postures and positive end-expiratory pressure (PEEP) on the regional distribution of ventilation and perfusion. We measured regional ventilation (VA) and regional blood flow (Q) in six anesthetized, mechanically ventilated dogs in the left (LLD) and right lateral decubitus (RLD) postures with and without 10 cmH(2)O PEEP. Q was measured by use of intravenously injected 15-microm fluorescent microspheres, and VA was measured by aerosolized 1-microm fluorescent microspheres. Fluorescence was analyzed in lung pieces approximately 1.7 cm(3) in volume. Multiple linear regression analysis was used to evaluate three-dimensional spatial gradients of Q, VA, the ratio VA/Q, and regional PO(2) (Pr(O(2))) in both lungs. In the LLD posture, a gravity-dependent vertical gradient in Q was observed in both lungs in conjunction with a reduced blood flow and Pr(O(2)) to the dependent left lung. Change from the LLD to the RLD or 10 cmH(2)O PEEP increased local VA/Q and Pr(O(2)) in the left lung and minimized any role of hypoxia. The greatest reduction in individual lung volume occurred to the left lung in the LLD posture. We conclude that lung distortion caused by the weight of the heart and abdomen is greater in the LLD posture and influences both Q and VA, and ultimately gas exchange. In this respect, the smaller left lung was the most susceptible to impaired gas exchange in the LLD posture.  相似文献   

3.
The classic four-zone model of lung blood flow distribution has been questioned. We asked whether the effect of positive end-expiratory pressure (PEEP) is different between the prone and supine position for lung tissue in the same zonal condition. Anesthetized and mechanically ventilated prone (n = 6) and supine (n = 5) sheep were studied at 0, 10, and 20 cm H2O PEEP. Perfusion was measured with intravenous infusion of radiolabeled 15-microm microspheres. The right lung was dried at total lung capacity and diced into pieces (approximately 1.5 cm3), keeping track of the spatial location of each piece. Radioactivity per unit weight was determined and normalized to the mean value for each condition and animal. In the supine posture, perfusion to nondependent lung regions decreased with little relative perfusion in nondependent horizontal lung planes at 10 and 20 cm H2O PEEP. In the prone position, the effect of PEEP was markedly different with substantial perfusion remaining in nondependent lung regions and even increasing in these regions with 20 cm H2O PEEP. Vertical blood flow gradients in zone II lung were large in supine, but surprisingly absent in prone, animals. Isogravitational perfusion heterogeneity was smaller in prone than in supine animals at all PEEP levels. Redistribution of pulmonary perfusion by PEEP ventilation in supine was largely as predicted by the zonal model in marked contrast to the findings in prone. The differences between postures in blood flow distribution within zone II strongly indicate that factors in addition to pulmonary arterial, venous, and alveolar pressure play important roles in determining perfusion distribution in the in situ lung. We suggest that regional variation in lung volume through the effect on vascular resistance is one such factor and that chest wall conformation and thoracic contents determine regional lung volume.  相似文献   

4.
We have determined the sites of hypoxic vasoconstriction in ferret lungs. Lungs of five 3- to 5-wk-old and five adult ferrets were isolated and perfused with blood. Blood flow was adjusted initially to keep pulmonary arterial pressure at 20 cmH2O and left atrial and airway pressures at 6 and 8 cmH2O, respectively (zone 3). Once adjusted, flow was kept constant throughout the experiment. In each lung, pressures were measured in subpleural 20- to 50-microns-diam arterioles and venules with the micropipette servo-nulling method during normoxia (PO2 approximately 100 Torr) and hypoxia (PO2 less than 50 Torr). In normoxic adult ferret lungs, approximately 40% of total vascular resistance was in arteries, approximately 40% was in microvessels, and approximately 20% was in veins. With hypoxia, the total arteriovenous pressure drop increased by 68%. Arterial and venous pressure drops increased by 92 and 132%, respectively, with no change in microvascular pressure drop. In 3- to 5-wk-old ferret lungs, the vascular pressure profile during normoxia and the response to hypoxia were similar to those in adult lungs. We conclude that, in ferret lungs, arterial and venous resistances increase equally during hypoxia, resulting in increased microvascular pressures for fluid filtration.  相似文献   

5.
Increased surface tension is an important component of several respiratory diseases, but its effects on pulmonary capillary mechanics are incompletely understood. We measured capillary volume and specific compliance before and after increasing surface tension with nebulized siloxane in excised dog lungs. The change in surface tension was sufficient to increase lung recoil 5 cm H(2)O at 50% total lung capacity. Increased surface tension decreased both capillary volume and specific compliance. The changes in capillary volume and compliance were greatest at the lung volumes at which the surface tension change was greatest. Near functional residual capacity, capillary volume postsiloxane was approximately 30% of control. Presiloxane capillary specific compliance was approximately 7%/cm H(2)O near functional residual capacity and approximately 2.5%/cm H(2)O near total lung capacity. Postsiloxane capillary-specific compliance was 3%/cm H(2)O, and was independent of lung volume. We conclude that in addition to their well-known effects on lung mechanics, changes in surface tension also have important effects on capillary mechanics. We speculate that these changes may in turn affect ventilation and perfusion, worsen gas exchange, and alter leukocyte sequestration.  相似文献   

6.
Maximal lung volume or total lung capacity in experimental animals is dependent on the pressure to which the lungs are inflated. Although 25-30 cm H2O are nominally used for such inflations, mouse pressure-volume (P-V) curves show little flattening on inflation to those pressures. In the present study, we examined P-V relations and mean alveolar chord length in three strains (C3H/HeJ, A/J, and C57BL/6J) at multiple inflation pressures. Mice were anesthetized, and their lungs were degassed in vivo by absorption of 100% O2. P-V curves were then recorded in situ with increasing peak inflation pressure in 10-cm H2O increments up to 90 cm H2O. Lungs were quickly frozen at specific pressures for morphometric analysis. The inflation limbs never showed the appearance of a plateau, with lung volume increasing 40-60% as inflation pressure was increased from 30 to 60 cm H2O. In contrast, parallel flat deflation limbs were always observed, regardless of the inflation pressure, indicating that the presence of a flat deflation curve cannot be used to justify measurement of total lung capacity in mice. Alveolar size increased monotonically with increasing pressure in all strains, and there was no evidence of irreversible lung damage from these inflations to high pressures. These results suggest that the mouse lung never reaches a maximal volume, even up to nonphysiological pressures >80 cm H2O.  相似文献   

7.
Hypoxic pulmonary vasoconstriction (HPV) serves to maintain optimal gas exchange by decreasing perfusion to hypoxic regions. However, global hypoxia and nonuniform HPV may result in overperfusion of poorly constricted regions leading to local edema seen in high-altitude pulmonary edema. To quantify the spatial distribution of HPV and its response to regional Po2 (Pr(O2)) among small lung regions, five pigs were anesthetized and mechanically ventilated in the supine posture. The animals were ventilated with an inspired O2 fraction (Fi(O2)) of 0.50 and 0.21 and then (in random order) 0.15, 0.12, and 0.09. Regional blood flow (Q) and alveolar ventilation (Va) were measured by using intravenous infusion of 15 microm and inhalation of 1-microm fluorescent microspheres, respectively. Pr(O2) was calculated for each piece at each Fi(O2). Lung pieces differed in their Q response to hypoxia in a manner related to their initial Va/Q with Fi(O2) = 0.21. Reducing Fi(O2) < 0.15 decreased Q to the initially high Va/Q (higher Pr(O2)) regions and forced Q into the low Va/Q (dorsal-caudal) regions. Resistance increased in most lung pieces as Pr(O2) decreased, reaching a maximum resistance when Pr(O2) is between 40 and 50 Torr. Local resistance decreased at PrO2 < 40 Torr. Pieces were statistically clustered with respect to their relative Q response pattern to each Fi(O2). Some clusters were shown to be spatially organized. We conclude that HPV is spatially heterogeneous. The heterogeneity of Q response may be related, in part, to the heterogeneity of baseline Va/Q.  相似文献   

8.
In acute respiratory distress syndrome, mechanical ventilation often induces alveolar overdistension aggravating the primary insult. To examine the mechanism of overdistension, surfactant-deficient immature rabbits were anesthetized with pentobarbital sodium, and their lungs were treated with serum-diluted modified natural surfactant (porcine lung extract; 2 mg/ml, 10 ml/kg). By mechanical ventilation with a peak inspiration pressure of 22.5 cm H2O, the animals had a tidal volume of 14.7 ml/kg (mean), when 2.5 cm H2O positive end-expiratory pressure was added. This volume was similar to that in animals treated with nondiluted modified natural surfactant (24 mg/ml in Ringer solution, 10 ml/kg). However, the lungs fixed at 10 cm H2O on the deflation limbs of the pressure-volume curve had the largest alveolar/alveolar duct profiles (> or =48,000 microm2), accounting for 38% of the terminal air spaces, and the smallest (<6,000 microm2), accounting for 31%. These values were higher than those in animals treated with nondiluted modified natural surfactant (P <0.05). We conclude that administration of serum-diluted surfactant to immature neonatal lungs leads to patchy overdistension of terminal air spaces, similar to the expansion pattern that may be seen after dilution of endogenous surfactant with proteinaceous edema fluid in acute respiratory distress syndrome.  相似文献   

9.
To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.  相似文献   

10.
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A (CYP4A) metabolite of arachidonic acid (AA) in human and rabbit lung microsomes and is a dilator of isolated human pulmonary arteries (PA). However, little is known regarding the contribution of P-450 metabolites to pulmonary vascular tone. We examined 1) the effect of two mechanistically distinct omega- and omega1-hydroxylase inhibitors on perfusion pressures in isolated rabbit lungs ventilated with normoxic or hypoxic gases, 2) changes in rabbit PA ring tone elicited by 20-HETE or omega- and omega1-hydroxylase inhibitors, and 3) expression of CYP4A protein in lung tissue. A modest increase in perfusion pressure (55 +/- 11% above normoxic conditions) was observed in isolated perfused lungs during ventilation with hypoxic gas (FI(O(2)) = 0.05). Inhibitors of 20-HETE synthesis, 17-oxydecanoic acid (17-ODYA) or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), increased baseline perfusion pressure above that of vehicle and amplified hypoxia-induced increases in perfusion pressures by 92 +/- 11% and 105 +/- 11% over baseline pressures, respectively. 20-HETE relaxed phenylephrine (PE)-constricted PA rings. Treatment with 17-ODYA enhanced PE-induced contraction of PA rings, consistent with inhibition of a product that promotes arterial relaxation, whereas 6-(20-propargyloxyphenyl)hexanoic acid (PPOH), an epoxygenase inhibitor, blunted contraction to PE. Conversion of AA into 20-HETE was blocked by 17-ODYA, DDMS, and hypoxia. CYP4A immunospecific protein confirms expression of CYP4A in male rabbit lung tissue. Our data suggest that endogenously produced 20-HETE could modify rabbit pulmonary vascular tone, particularly under hypoxic conditions.  相似文献   

11.
The volume of myocardial tissue that is perfused by an epicardial coronary artery has been shown to be predictably related to the diameter of the epicardial arterial lumen. However, to what extent the intramyocardial microvasculature follows the epicardial rules remains unclear. To explore the relationship between the diameter of coronary arterioles and their subsequent perfused myocardial volumes, we quantified the volume of nonperfused myocardium resulting from an embolized arteriole of a certain diameter. We injected a single dose of microspheres selected from one of nine possible microsphere combinations (10, 30, and 100 microm diameter, each at three possible doses) into the left anterior descending coronary and/or left circumflex arteries of seven anesthetized pigs. At postmortem, the coronary arteries were infused with a radiopaque silicon polymer. Embolized myocardium (1 cm(3)) was scanned with a microcomputerized tomography scanner and resulted in three-dimensional images that consisted of 20 microm/side cubic voxels and a subvolume of the specimen with 4 microm/side cubic voxels. Image analysis provided the number and volumes of myocardial perfusion defects for each size and dose of microspheres. The smallest individual myocardial perfusion defects, which correspond to the volume of myocardium perfused by a single embolized arteriole, were found to be 0.0004 +/- 0.0002, 0.02 +/- 0.004, and 0.62 +/- 0.099 mm(3) for the 10-, 30-, and 100-microm microspheres, respectively. The number of myocardial perfusion defects in the embolized myocardium was inversely related to the dose of the injected microspheres. This reflects a clustering behavior that is consistent with a random distribution process of the individual embolized perfusion defects.  相似文献   

12.
Two types of unilateral lung edema in sheep were characterized regarding their effects on pulmonary gas exchange, hemodynamics, and distribution of pulmonary perfusion. One edema type was induced with aerosolized HCl (0.15 M, pH 1.0) and the other with NaCl (0.15 M, pH 7.4). Both aerosols were nebulized continuously for 4 h into left lungs. In HCl-treated animals, pulmonary gas exchange deteriorated [from a partial arterial O(2) pressure-to-inspired O(2) fraction ratio (Pa(O(2))/FI(O(2))) of 254 at baseline to 187 after 4 h HCl]. In addition, pulmonary artery pressure and total pulmonary vascular resistance increased (from 16 to 19 mmHg and from 133 to 154 dyn. s. cm(-5), respectively). In NaCl-treated animals, only the central venous pressure significantly increased (from 7 to 9 mmHg). Distribution of pulmonary perfusion (measured with fluorescent microspheres) changed differently in both groups. After HCl application, 6% more blood flow was directed to the treated lung, whereas, after NaCl, 5% more blood flow was directed to the untreated lung. HCl and NaCl treatment both induce an equivalent lung edema, but only HCl treatment is associated with gas exchange alteration and tissue damage. Redistribution of pulmonary perfusion maintains gas exchange during NaCl treatment and decreases it during HCl inhalation.  相似文献   

13.
Magnetic resonance elastography (MRE) is a MR imaging method capable of spatially resolving the intrinsic mechanical properties of normal lung parenchyma. We tested the hypothesis that the mechanical properties of edematous lung exhibit local properties similar to those of a fluid-filled lung at transpulmonary pressures (P(tp)) up to 25 cm H(2)O. Pulmonary edema was induced in anesthetized female adult Sprague-Dawley rats by mechanical ventilation to a pressure of 40 cm H(2)O for ~30 min. Prior to imaging the wet weight of each ex vivo lung set was measured. MRE, high-resolution T(1)-weighted spin echo and T(2)* gradient echo data were acquired at each P(tp) for both normal and injured ex vivo lungs. At P(tp)s of 6 cm H(2)O and greater, the shear stiffness of normal lungs was greater than injured lungs (P ≤ 0.0003). For P(tp)s up to 12 cm H(2)O, shear stiffness was equal to 1.00, 1.07, 1.16, and 1.26 kPa for the injured and 1.31, 1.89, 2.41, and 2.93 kPa for normal lungs at 3, 6, 9, and 12 cm H(2)O, respectively. For injured lungs MRE magnitude signal and shear stiffness within regions of differing degrees of alveolar flooding were calculated as a function of P(tp). Differences in shear stiffness were statistically significant between groups (P < 0.001) with regions of lower magnitude signal being stiffer than those of higher signal. These data demonstrate that when the alveolar space filling material is fluid, MRE-derived parenchymal shear stiffness of the lung decreases, and the lung becomes inherently softer compared with normal lung.  相似文献   

14.
In artificially ventilated animals we investigated the dependence of the pulmonary diffusing capacities of nitric oxide (NO) and doubly 18O-labeled carbon dioxide (DLNO, DLC18O2) on lung expansion with respect to ventilator-driven increases in intrapulmonary pressure. For this purpose we applied computerized single-breath experiments to 11 anesthetized paralyzed rabbits (weight 2.8-3.8 kg) at various alveolar volumes (45-72 ml) by studying the almost entire inspiratory limb of the respective pressure/volume curves (intrapulmonary pressure: 6-27 cmH2O). The animals were ventilated with room air, employing a computerized ventilatory servo-system that we designed to maintain mechanical ventilation and to execute the particular lung function tests automatically. Each single-breath maneuver was started from residual volume (13.5+/-2 ml, mean+/-SD) by inflating the rabbit lungs with 35-55 ml indicator gas mixture containing 0.05% NO in N2 or 0.9% C18O2 in N2. Alveolar partial pressures of NO and C18O2 were measured by respiratory mass spectrometry. Values of DLNO and DLC18O2 ranged between 1.55 and 2.49 ml/(mmHg min) and 11.7 and 16.6 ml/(mmHg min), respectively. Linear regression analyses yielded a significant increase in DLNO with simultaneous increase in alveolar volume (P<0.005) and intrapulmonary pressure (P<0.023) whereas DLC18O2 was not improved. Our results suggest that the ventilator-driven lung expansion impaired the C18O2 blood uptake conductance, finally compensating for the beneficial effect of the increase in alveolar volume on DLC18O2 values.  相似文献   

15.
Ischemia-reperfusion lung injury limits lung transplantation. Neutrophil activation and/or xanthine oxidase-mediated purine degradation may cause toxic oxygen metabolite production and lung injury. We investigated whether circulating blood elements are involved in the pathogenesis of ischemia-reperfusion lung injury. Isolated rat lungs were perfused with physiological salt solution (PSS) stabilized with Ficoll until circulating blood elements were not detected in the lung effluent. Lungs were then rendered ischemic by stopping ventilation and perfusion for 45 min at room temperature. Lung injury occurred and was quantitated by the accumulation of 125I-bovine serum albumin into lung parenchyma and alveolar lavage fluid during reperfusion. Lung injury occurred, in the absence of circulating blood elements, when ischemic lungs were reperfused with PSS-Ficoll solution alone. Reperfusion with whole blood or PSS-Ficoll supplemented with human or rat neutrophils did not increase lung injury. Furthermore, during lung ischemia, the presence of neutrophils did not enhance injury. Experiments using PSS-albumin perfusate and quantitating lung injury by permeability-surface area product yielded similar results. Microvascular pressures were not different and could not account for the results. Toxic O2 metabolites were involved in the injury because addition of erythrocytes or catalase to the perfusate attenuated the injury. Thus reperfusion after lung ischemia causes injury that is dependent on a nonneutrophil source of toxic O2 metabolites.  相似文献   

16.
At birth, pulmonary vasodilation occurs during rhythmic distension of the lungs and oxygenation. Inhibition of prostaglandin synthesis prevents pulmonary vasodilation during rhythmic distension of the lungs but not during oxygenation. Because endothelium-derived relaxing factor (EDRF) modulates pulmonary vascular tone at birth, at rest, and during hypoxia in older animals, we hypothesized that EDRF may modulate pulmonary vascular tone during oxygenation in fetal lambs. We studied the responses to N omega-nitro-L-arginine, a competitive inhibitor of EDRF synthesis, in nine near-term fetal lambs and to drug vehicle in six of these lambs and the subsequent responses to in utero ventilation with 95% O2 in these fetal lambs. In all fetal lambs, prostaglandin synthesis was prevented by meclofenamate. N omega-nitro-L-arginine increased pulmonary and systemic arterial pressures by 28% (P < 0.05) and 31% (P < 0.05), respectively, and decreased pulmonary blood flow by 83% (P < 0.05). In the controls, ventilation with 95% O2 increased pulmonary blood flow by 1,050% (P = 0.05) without changing pressures, thereby decreasing pulmonary vascular resistance by 88% (P = 0.05). During N omega-nitro-L-arginine infusion, ventilation with 95% O2 increased pulmonary blood flow by 162% (P = 0.05) and decreased pulmonary vascular resistance by 74% (P = 0.05). This suggests that EDRF may play an important role in modulating resting pulmonary vascular tone in fetal lambs and in the vasodilatory response to ventilation with O2 in utero.  相似文献   

17.
We have determined the effect of pulsatile flow on segmental vascular resistance in lungs from 29 adult rabbits. In group I (n = 4), II (n = 8), and III (n = 8) lungs were isolated. In group IV (n = 9) rabbits were anesthetized, their chests were opened, and lungs were studied in vivo. Group I and II lungs had steady-flow perfusion: group I with intact vasotonus and group II with papaverine treatment. Group III lungs (papaverine treated) were perfused for two consecutive 45-min periods with steady and pulsatile flow. In all isolated lungs and in lungs of five anesthetized rabbits, we measured pressures in subpleural 20- to 50-microns-diam arterioles and venules by use of the micropipette servo-nulling method. Measurement of distribution of blood flow in lungs of four anesthetized rabbits by use of radiolabeled microspheres revealed no abnormality of blood flow to the micropunctured lobe. We found that total and segmental vascular resistances were similar in group I and II lungs, with microvessels representing 55% of total resistance. In group III lungs, total resistance was 30% lower during pulsatile flow than during steady flow because of a lower microvascular resistance. Lungs in vivo (group IV) had a significantly lower total vascular resistance than isolated lungs and had a low fractional resistance in microvessels (approximately 28%). We conclude that, in isolated perfused adult rabbit lungs, vascular resistance is very high, particularly in the microvascular segment, and that pulsatile flow decreases microvascular resistance.  相似文献   

18.
Systematically mapped samples cut from lungs previously labeled with intravascular and aerosol microspheres can be used to create high-resolution maps of regional perfusion and regional ventilation. With multiple radioactive or fluorescent microsphere labels available, this methodology can compare regional flow responses to different interventions without partial volume effects or registration errors that complicate interpretation of in vivo imaging measurements. Microsphere blood flow maps examined at different levels of spatial resolution have revealed that regional flow heterogeneity increases progressively down to an acinar level of scale. This pattern of scale-dependent heterogeneity is characteristic of a fractal distribution network, and it suggests that the anatomic configuration of the pulmonary vascular tree is the primary determinant of high-resolution regional flow heterogeneity. At approximately 2-cm(3) resolution, the large-scale gravitational gradients of blood flow per unit weight of alveolar tissue account for <5% of the overall flow heterogeneity. Furthermore, regional blood flow per gram of alveolar tissue remains relatively constant with different body positions, gravitational stresses, and exercise. Regional alveolar ventilation is accurately represented by the deposition of inhaled 1.0-microm fluorescent microsphere aerosols, at least down to the approximately 2-cm(3) level of scale. Analysis of these ventilation maps has revealed the same scale-dependent property of regional alveolar ventilation heterogeneity, with a strong correlation between ventilation and blood flow maintained at all levels of scale. The ventilation-perfusion (VA/Q) distributions obtained from microsphere flow maps of normal animals agree with simultaneously acquired multiple inert-gas elimination technique VA/Q distributions, but they underestimate gas-exchange impairment in diffuse lung injury.  相似文献   

19.
Mechanical stress during ventilation may cause or aggravate acute lung injury. This study investigates the influence of low vs. high tidal volume (V(t)) on factors known to play key roles in acute lung injury: nitric oxide release, eNOS and iNOS gene expression, lipid peroxidation (LPO), and surfactant phospholipids (PL). Isolated rabbit lungs were subjected to one of three ventilation patterns for 135 min (V(t)-PEEP): 6 ml/kg-0 cm H(2)O. 12 ml/kg-0 cm H(2)O 6 ml/kg-5 cm H(2)O, 12 ml/kg-0 cm H(2)O, and 6 ml/kg-5 cm H(2)O resulted in comparable peak inspiratory pressure (PIP). This allowed comparing low and high V(t) without dependence on PIP. Ventilatory patterns did not induce changes in pulmonary artery pressure, vascular permeability (K(f,c)), PIP or pulmonary compliance. High V(t) in comparison with both of the low V(t) groups caused an increase in BALF-nitrite (30.6+/-3.0* vs. 21.4+/-2.2 and 16.2+/-3.3 microM), BALF-PL (1110+/-19* vs. 750+/-68 and 634+/-82 microg/ml), and tissue LPO product accumulation (0.62+/-0.051* vs. 0.48+/-0.052 and 0.43+/-0.031 nmol/mg), *P<0.05 each. Perfusate nitrite and BALF-PL composition (assessed by use of 31P-NMR spectroscopy and MALDI-TOF mass spectrometry) did not differ among the groups. High V(t) ventilation reduced eNOS gene expression but did not affect iNOS expression. The increased release of NO and the accumulation of LPO products may represent early lung injury while elevated BALF-PL may reflect distension-induced surfactant secretion.  相似文献   

20.
We compared the transport of three proteins with different hydrodynamic radii with ultrastructural changes in lungs of intact mice ventilated at peak inflation pressures (PIP) of 15, 35, 45, and 55 cmH(2)O for 2 h and PIP of 55 cmH(2)O for 0.5 and 1 h. After 2 h of ventilation, significant increases were observed in plasma Clara cell secretory protein (1.9 nm radius) at 35 cmH(2)O PIP and in bronchoalveolar lavage fluid albumin (3.6 nm radius) at 45 cmH(2)O PIP and IgG (5.6 nm radius) at 55 cmH(2)O PIP. Increased concentrations of all three proteins and lung wet-to-dry weight ratios were significantly correlated with PIP and ventilation time. Clara cell secretory protein and albumin increased significantly after 0.5 h of 55 cmH(2)O PIP, but IgG increased only after 2 h. Separation of endothelium or epithelium to form blebs was apparent only in small vessels (15-30 microm diameter) at 45 cmH(2)O PIP and after 0.5 h at 55 cmH(2)O PIP but became extensive after 2 h of ventilation at 55 cmH(2)O PIP. Junctional gaps between cells were rarely observed. Ultrastructural lung injury and protein clearances across the air-blood barrier were related to ventilation time and PIP levels. Protein clearances increased in relation to molecular size, consistent with increasing dimensions and frequency of transmembrane aqueous pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号