首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Seven different monoclonal antibodies (MAbs) specific to only Vibrio cholerae were produced using a combination of five representative serotypes of V. cholerae for immunization. The first three MAbs (VC-93, VC-82 and VC-223) were specific to the V. cholerae serogroup O1 with different avidity for the serotypes O1 Inaba and O1 Ogawa. The fourth and the fifth MAbs were specific to V. cholerae O139 (VC-812) or O141 (VC-191) serogroups, respectively. The sixth MAb (VC-26) bound to all three serogroups of V. cholerae. The seventh MAb (VC-63) bound to all twenty five isolates of V. cholerae used in this study. None of the seven MAbs showed cross-reactivity with other Vibrio spp. or closely-related V. cholerae species, V. mimicus or other gram-negative bacteria. The eighth MAbs (VC-201) specific to almost all Vibrio spp. was also obtained. In dot blotting, these MAbs can be used to detect a diluted pure culture of V. cholerae in solution with a sensitivity range of from 105 to 107 CFU ml− 1. However, the detection capability could be improved equivalent to that of PCR technique after preincubation of samples in alkaline peptone water (APW). Thus, these MAbs constitute convenient immunological tools that can be used for simple, rapid and simultaneous direct detection and differentiation of the individual serotypes of V. cholerae in complex samples, such as food and infected animals, without the requirement for bacterial isolation or biochemical characterization.  相似文献   

3.
Work in recent years has led to the recognition of the importance of small regulatory RNAs (sRNAs) in bacterial regulation networks. New high-throughput sequencing technologies are paving the way to the exploration of an expanding sRNA world in nonmodel bacteria. In the Vibrio genus, compared to the enterobacteriaceae, still a limited number of sRNAs have been characterized, mostly in Vibrio cholerae, where they have been shown to be important for virulence, as well as in Vibrio harveyi. In addition, genome-wide approaches in V. cholerae have led to the discovery of hundreds of potential new sRNAs. Vibrio splendidus is an oyster pathogen that has been recently associated with massive mortality episodes in the French oyster growing industry. Here, we report the first RNA-seq study in a Vibrio outside of the V. cholerae species. We have uncovered hundreds of candidate regulatory RNAs, be it cis-regulatory elements, antisense RNAs, and trans-encoded sRNAs. Conservation studies showed the majority of them to be specific to V. splendidus. However, several novel sRNAs, previously unidentified, are also present in V. cholerae. Finally, we identified 28 trans sRNAs that are conserved in all the Vibrio genus species for which a complete genome sequence is available, possibly forming a Vibrio “sRNA core.”  相似文献   

4.
A species-specific RNA colony blot hybridization protocol was developed for enumeration of culturable Vibrio cholerae and Vibrio mimicus bacteria in environmental water samples. Bacterial colonies on selective or nonselective plates were lysed by sodium dodecyl sulfate, and the lysates were immobilized on nylon membranes. A fluorescently labeled oligonucleotide probe targeting a phylogenetic signature sequence of 16S rRNA of V. cholerae and V. mimicus was hybridized to rRNA molecules immobilized on the nylon colony lift blots. The protocol produced strong positive signals for all colonies of the 15 diverse V. cholerae-V. mimicus strains tested, indicating 100% sensitivity of the probe for the targeted species. For visible colonies of 10 nontarget species, the specificity of the probe was calculated to be 90% because of a weak positive signal produced by Grimontia (Vibrio) hollisae, a marine bacterium. When both the sensitivity and specificity of the assay were evaluated using lake water samples amended with a bioluminescent V. cholerae strain, no false-negative or false-positive results were found, indicating 100% sensitivity and specificity for culturable bacterial populations in freshwater samples when G. hollisae was not present. When the protocol was applied to laboratory microcosms containing V. cholerae attached to live copepods, copepods were found to carry approximately 10,000 to 50,000 CFU of V. cholerae per copepod. The protocol was also used to analyze pond water samples collected in an area of cholera endemicity in Bangladesh over a 9-month period. Water samples collected from six ponds demonstrated a peak in abundance of total culturable V. cholerae bacteria 1 to 2 months prior to observed increases in pathogenic V. cholerae and in clinical cases recorded by the area health clinic. The method provides a highly specific and sensitive tool for monitoring the dynamics of V. cholerae in the environment. The RNA blot hybridization protocol can also be applied to detection of other gram-negative bacteria for taxon-specific enumeration.Vibrio cholerae is autochthonous to the aquatic environment, but some strains produce enterotoxins and are capable of causing epidemics of the human disease cholera. Strains of V. cholerae are classified by their O antigen, with over 210 serogroups recognized to date. Seven cholera pandemics have occurred since 1832: while microbiologic data on the earlier pandemics are not available, the last two are known to have been caused by strains within serogroup O1, with the major pathogenic factor being production of cholera toxin. The genes encoding cholera toxin and other pathogenic factors have been shown to reside in a mobile genetic element of phage origin, designated CTXΦ (20).Standard microbiologic methods for isolation of V. cholerae present in natural waters rely primarily on a method originally developed for clinical diagnosis, namely, enrichment in alkaline peptone water, followed by subculture on selective media and confirmation using selected biochemical and immunological tests (7). The alkaline nature of the enrichment broth allows differential multiplication of Vibrio species but renders this method inappropriate for enumeration. PCR methods and oligonucleotide hybridization have been used to detect and enumerate toxigenic V. cholerae bacteria (3, 11, 12, 14, 15, 21). These methods typically rely on amplification of or hybridization to pathogenic markers, such as O1/O139 wbe, tcpA, and ctxA DNA sequences.However, occasional localized outbreaks of cholera have been caused by non-O1, non-O139 V. cholerae, which may be toxigenic or nontoxigenic. Conversely, many environmental V. cholerae O1 strains isolated from areas of endemicity do not harbor ctx genes (9). It has also been shown that CTXΦ is capable of lysogenic conversion of strains that are CTXΦ negative (20). Additionally, the cholera toxin (CTX) prophage has also been detected in clinical strains of V. mimicus, and V. mimicus has been proposed as a natural reservoir for CTXΦ (2). Furthermore, ecological studies of V. cholerae are often hampered by the fact that toxigenic strains represent only a small percentage of the total V. cholerae population in the environment, especially in areas where cholera is not endemic. These facts underline the need for a method of detection of the total number of V. cholerae bacteria present in environmental samples.The many copies of 16S rRNA molecules in each V. cholerae cell offer appropriate targets for species-specific enumeration. In this study, the probe Vchomim1276, previously described by Heidelberg et al. (4-6), was employed in an RNA colony blot hybridization protocol. The specificity and sensitivity of the probe were tested using type strains and environmental and clinical isolates. The method was evaluated using laboratory microcosms to which cells of V. cholerae were added, and the protocol was used to enumerate V. cholerae bacteria in samples collected from ponds in a region of cholera endemicity in Bangladesh.  相似文献   

5.
The decline of European abalone Haliotis tuberculata populations has been associated with various pathogens including bacteria of the genus Vibrio. Following the summer mortality outbreaks reported in France between 1998 and 2000, Vibrio harveyi strains were isolated from moribund abalones, allowing in vivo and in vitro studies on the interactions between abalone H. tuberculata and V. harveyi. This work reports the development of primary cell cultures from abalone gill tissue, a target tissue for bacterial colonisation, and their use for in vitro study of host cell—V. harveyi interactions. Gill cells originated from four-day-old explant primary cultures were successfully sub-cultured in multi-well plates and maintained in vitro for up to 24 days. Cytological parameters, cell morphology and viability were monitored over time using flow cytometry analysis and semi-quantitative assay (XTT). Then, gill cell cultures were used to investigate in vitro the interactions with V. harveyi. The effects of two bacterial strains were evaluated on gill cells: a pathogenic bacterial strain ORM4 which is responsible for abalone mortalities and LMG7890 which is a non-pathogenic strain. Cellular responses of gill cells exposed to increasing concentrations of bacteria were evaluated by measuring mitochondrial activity (XTT assay) and phenoloxidase activity, an enzyme which is strongly involved in immune response. The ability of gill cells to phagocyte GFP-tagged V. harveyi was evaluated by flow cytometry and gill cells-V. harveyi interactions were characterized using fluorescence microscopy and transmission electron microscopy. During phagocytosis process we evidenced that V. harveyi bacteria induced significant changes in gill cells metabolism and immune response. Together, the results showed that primary cell cultures from abalone gills are suitable for in vitro study of host-pathogen interactions, providing complementary assays to in vivo experiments.  相似文献   

6.
A new protocol for rapid, specific, and sensitive cell-based quantification of Vibrio cholerae/Vibrio mimicus in water samples was developed. The protocol is based on catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) in combination with solid-phase cytometry. For pure cultures, we were able to quantify down to 6 V. cholerae cells on one membrane with a relative precision of 39% and down to 12 cells with a relative precision of 17% after hybridization with the horseradish peroxidase (HRP)-labeled probe Vchomim1276 (specific for V. cholerae and V. mimicus) and signal amplification. The corresponding position of the probe on the 16S rRNA is highly accessible even when labeled with HRP. For the first time, we were also able to successfully quantify V. cholerae/V. mimicus via solid-phase cytometry in extremely turbid environmental water samples collected in Austria. Cell numbers ranged from 4.5 × 101 cells ml−1 in the large saline lake Neusiedler See to 5.6 × 104 cells ml−1 in an extremely turbid shallow soda lake situated nearby. We therefore suggest CARD-FISH in combination with solid-phase cytometry as a powerful tool to quantify V. cholerae/V. mimicus in ecological studies as well as for risk assessment and monitoring programs.  相似文献   

7.
Water, sediment, and shellfish from three Oregon estuaries were cultured for pathogenic Vibrio species. Non-O1 serovars of V. cholerae were the most common pathogenic Vibrio species recovered. Non-O1 V. cholerae were isolated from all three estuaries sampled, covering an area of about 170 miles along the Oregon coast. Non-O1 V. cholerae were isolated from water and sediment, but not shellfish, at temperatures ranging from 11 to 19°C and salinities of 2.3 to 26‰. Sixteen isolates representing 12 different non-O1 serovars were identified, while four non-O1 V. cholerae isolates failed to react with any of the 54 antisera tested. These results indicate that non-O1 V. cholerae serovars can be found over a large geographic area and under a variety of environmental conditions. These organisms are apparently an autochthonous component of these estuarine microbial communities.  相似文献   

8.
Using a 0.27 kb DNA probe specific for the heat-stable enterotoxin gene (nag-st) of Vibrio cholerae non-O1, 1109 strains representing 17 species of the genus Vibrio, isolated from clinical and environmental sources were examined. The nag-st gene was preponderantly associated with strains classified as V. mimicus; 16.8% of these strains hybridized. It was more frequent in the clinical isolates (22.6%) than in the environmental isolates (13.7%). The incidence of nag-st gene-positive strains of V. mimicus isolated from different countries was uniformly high and ranged between 8.7% (Bangladesh) and 57.1% (environmental strains from USA). The incidence of the nag-st gene was much lower among strains of V. cholerae non-O1 (3.6%). Probe-positive and-negative strains of V. mimicus and V. cholerae non-O1 were used to evaluate the performance of the conventional suckling mouse assay for detection of the NAG-ST enterotoxin. Of the 31 probe-positive strains, only five (16.1%) yielded a positive fluid accumulation ratio (FA ratio) when neat heated culture supernatant was used to perform the suckling mouse assay. All the 31 probe-positive strains gave a positive FA ratio when 20-fold concentrated and heated culture supernatants of the strains were used to perform the suckling mouse assay. The need to concentrate (by at least 20-fold) the culture supernatant of strains of V. mimicus and V. Cholerae non-O1 was identified as an important step to obtain consistent results when using the suckling mouse assay for detection of NAG-ST.P. Yuan, A. Ogawa and T. Takeda are with the Department of Infectious Disease Research, National Children's Medical Research Center, 3-35-31 Taishido, Setagaya-ku, Tokyo 154, Japan; P. Yuan is also with the National Institute for the Control of Pharmaceutical and Biological Products, Beijing, China. T. Ramamurthy and G.B. Nair are with the National Institute of Cholera and Enteric Diseases, Calcutta, India. T. Shimada is with the National Institute of Health, Tokyo 141, Japan. S. Shinoda is with the Faculty of Pharmaceutical Sciences, Okayama University, Japan.  相似文献   

9.
Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca vitulina) may serve as sentinels for coastal ecosystem health. Seals using urbanized coastal habitat can acquire enteric bacteria, including Vibrio that may affect their health. To understand Vibrio dynamics in seals, demographic and environmental factors were tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific harbor seals (Phoca vitulina richardii) off California. Vibrio prevalence did not vary with season and was greater in free-ranging seals (29 %, n?=?319) compared with stranded seals (17 %, n?=?189). Of the factors tested, location, turbidity, and/or salinity best predicted Vibrio prevalence in free-ranging seals. The relationship of environmental factors with Vibrio prevalence differed by location and may be related to oceanographic or terrestrial contributions to water quality. Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae were observed in seals, with V. cholerae found almost exclusively in stranded pups and yearlings. Additionally, virulence genes (trh and tdh) were detected in V. parahaemolyticus isolates. Vibrio cholerae isolates lacked targeted virulence genes, but were hemolytic. Three out of four stranded pups with V. parahaemolyticus (trh+ and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, and Vibrio expression of virulence genes should be investigated. Considering that humans share the environment and food resources with seals, potentially virulent Vibrio observed in seals also may be of concern to human health.  相似文献   

10.
Sixty-six strains unable to ferment sucrose and resemblingVibrio mimicus andV. cholerae were submitted to an extensive phenotypic characterization. DNA-DNA homology among selected strains and the type strain ofV. cholerae was studied by the S1 endonuclease method. Seven sucrose-negative strains were shown to have the phenotypic properties of and a high percentage DNA relatedness toV. cholerae and a low level of homology withV. mimicus. Eight luminescent strains phenotypically most closely resembledV. mimicus; however, two of these were shown to have a high level of DNA homology withV. cholerae and a low level of relatedness toV. mimicus. A single strain was found to be phenotypically and genetically unrelated to eitherV. cholerae orV. mimicus and may represent a new species. The remaining strains were phenotypically shown to beV. mimicus, and selected strains were shown to have a high percentage DNA homology withV. mimicus and a low level of homology withV. cholerae. Problems associated with the identification of these strains and differential traits are discussed.  相似文献   

11.
In this study, we demonstrated that analyzed strains of Vibrio mimicus and Vibrio cholerae could be separated in two groups by using multilocus enzyme electrophoresis (MEE) data from 14 loci. We also showed that the combination of four enzymatic loci enables us to differentiate these two species. Our results showed that the ribosomal intergenic spacer regions PCR-mediated identification system failed, in some cases, to differentiate between V. mimicus and V. cholerae. On the other hand, MEE proved to be a powerful molecular tool for the discrimination of these two species even when atypical strains were analyzed.  相似文献   

12.

Background

Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s) to induce interleukin-8 (IL-8) production by human intestinal epithelial cells. The aim was to identify the secreted component(s) of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV.

Methodology/Principal Findings

Culture supernatants of wild type V. cholerae O1 strain C6706, its derivatives and pure V. cholerae cytolysin (VCC) were analyzed for the capacity to induce changes in cytokine mRNA expression levels, IL-8 and tumor necrosis factor-α (TNF-α) secretion, permeability and cell viability when added to the apical side of polarized tight monolayer T84 cells used as an in vitro model for human intestinal epithelium. Culture supernatants were also analyzed for hemolytic activity and for the presence of PrtV and VCC by immunoblot analysis.

Conclusions/Significance

We suggest that VCC is capable of causing an inflammatory response characterized by increased permeability and production of IL-8 and TNF-α in tight monolayers. Pure VCC at a concentration of 160 ng/ml caused an inflammatory response that reached the magnitude of that caused by Vibrio-secreted factors, while higher concentrations caused epithelial cell death. The inflammatory response was totally abolished by treatment with PrtV. The findings suggest that low doses of VCC initiate a local immune defense reaction while high doses lead to intestinal epithelial lesions. Furthermore, VCC is indeed a substrate for PrtV and PrtV seems to execute an environment-dependent modulation of the activity of VCC that may be the cause of V. cholerae reactogenicity.  相似文献   

13.
Response of Pathogenic Vibrio Species to High Hydrostatic Pressure   总被引:3,自引:0,他引:3       下载免费PDF全文
Vibrio parahaemolyticus ATCC 17802, Vibrio vulnificus ATCC 27562, Vibrio cholerae O:1 ATCC 14035, Vibrio cholerae non-O:1 ATCC 14547, Vibrio hollisae ATCC 33564, and Vibrio mimicus ATCC 33653 were treated with 200 to 300 MPa for 5 to 15 min at 25°C. High hydrostatic pressure inactivated all strains of pathogenic Vibrio without triggering a viable but nonculturable (VBNC) state; however, cells already existing in a VBNC state appeared to possess greater pressure resistance.  相似文献   

14.
Vibrio cholerae poses a threat to human health, and new epidemic variants have been reported so far. Seventh pandemic V. cholerae strains are characterized by highly related genomic sequences but can be discriminated by a large set of Genomic Islands, phages and Integrative Conjugative Elements. Classical serotyping and biotyping methods do not easily discriminate among new variants arising worldwide, therefore the establishment of new methods for their identification is required. We developed a multiplex PCR assay for the rapid detection of the major 7th pandemic variants of V. cholerae O1 and O139. Three specific genomic islands (GI-12, GI-14 and GI-15), two phages (Kappa and TLC), Vibrio Seventh Pandemic Island 2 (VSP-II), and the ICEs of the SXT/R391 family were selected as targets of our multiplex PCR based on a comparative genomic approach. The optimization and specificity of the multiplex PCR was assessed on 5 V. cholerae 7th pandemic reference strains, and other 34 V. cholerae strains from various epidemic events were analyzed to validate the reliability of our method. This assay had sufficient specificity to identify twelve different V. cholerae genetic profiles, and therefore has the potential to be used as a rapid screening method.  相似文献   

15.
Vibrios in the Louisiana gulf coast environment   总被引:3,自引:0,他引:3  
Roberts  N. C.  Siebeling  R. J.  Kaper  J. B.  Bradford  H. B. 《Microbial ecology》1982,8(4):299-312
A polyphasic approach, using bacteriological, immunological, and molecular biological techniques was used to elucidate the distribution of pathogenicVibrio species in the Louisiana coastal environment. A variety ofVibrio species pathogenic for man, includingV. cholerae, V. parahaemolyticus, V. fluvialis, andV. vulnificus, were found to be ubiquitous in Louisiana.Vibrio species monitored were shown to fluctuate in response to environmental factors of temperature, salinity, and nutrient level, and to vary independently of fecal coliform counts. A comprehensive serological screening system, based on species specific H antigens, was developed to identify pathogenicVibrio sp. 1 step after primary isolation.Vibrio sp. were correctly identified with accuracies ranging from 93–100%, depending on the specific H antiserum. Over 2,500V. cholerae isolates were rapidly screened for production of cholera toxin by DNA hybridization of specific toxin gene probes to colonies inoculated on nitrocellulose filter paper. The toxin gene probes, together with O antigen analysis, revealed that enterotoxigenicV. cholerae 01 serovars were recovered only from sewage stations or human disease, whereas enterotoxigenicV. cholerae non 01 serovars were recovered from environmental samples in addition to clinical and sewage samples. The results of this study indicate that techniques of immunology and molecular biology are very valuable supplements to conventional bacteriological techniques in studying the epidemiology and ecology of pathogenicVibrio sp.  相似文献   

16.
17.
Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL), and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC). Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state.  相似文献   

18.
V. cholerae, V. parahaemolyticus, and V. vulnificus are recognized human pathogens. Although several studies are available worldwide, both on environmental and clinical contexts, little is known about the ecology of these vibrios in African coastal waters. In this study, their co-occurrence and relationships to key environmental constraints in the coastal waters of Guinea-Bissau were examined using the most probable number-polymerase chain reaction (MPN-PCR) approach. All Vibrio species were universally detected showing higher concentrations by the end of the wet season. The abundance of V. cholerae (ISR 16S-23S rRNA) ranged 0–1.2 × 104 MPN/L, whereas V. parahaemolyticus (toxR) varied from 47.9 to 1.2 × 105 MPN/L. Although the presence of genotypes associated with virulence was found in environmental V. cholerae isolates, ctxA+ V. cholerae was detected, by MPN-PCR, only on two occasions. Enteropathogenic (tdh+ and trh+) V. parahaemolyticus were detected at concentrations up to 1.2 × 103 MPN/L. V. vulnificus (vvhA) was detected simultaneously in all surveyed sites only at the end of the wet season, with maximum concentrations of 1.2 × 105 MPN/L. Our results suggest that sea surface water temperature and salinity were the major environmental controls to all Vibrio species. This study represents the first detection and quantification of co-occurring Vibrio species in West African coastal waters, highlighting the potential health risk associated with the persistence of human pathogenic Vibrio species.  相似文献   

19.
Microorganisms, especially endophytic fungi that reside in the tissue of living mangrove plants, seem to play a major role in meeting the general demand for new biologically active substances. During the course of screening for biologically active secondary metabolites from marine microorganisms, an antibiotic compound containing an indole and a diketopiperazine moiety was isolated from the culture medium of Penicilliumchrysogenum, (MTCC 5108), an endophytic fungus on the mangrove plant Porteresiacoarctata (Roxb.). The cell free culture medium of P. chrysogenum showed significant activity against Vibriocholerae, (MCM B-322), a pathogen causing cholera in humans. Bioassay guided chemical characterization of the crude extract led to the isolation of a secondary metabolite possessing a molecular formula C19H21O2N3. Its antibacterial activity was comparable with standard antibiotic, streptomycin. This compound (1) was found to be (3,1′-didehydro-3[2″(3′″,3′″-dimethyl-prop-2-enyl)-3″-indolylmethylene]-6-methyl pipera-zine-2,5-dione) on the basis of mass spectrometry, infrared spectroscopy and one and two-dimensional nuclear magnetic resonance analysis.  相似文献   

20.
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号