首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to establish a simple and scaleable transfection system we have used the cationic polymer polyethylenimine (PEI) to study transient transfection in HEK293 and 293(EBNA) cells grown in serum-free suspension culture. The transfection complexes were made directly within the cell culture by consecutively adding plasmid and PEI (direct method). Alternatively, the DNA-PEI transfection complexes were prepared in fresh medium (1/10 culture volume) and then added to the cells (indirect method). The results of this study clearly show that the ratio of PEI nitrogen to DNA phosphate is very important for high expression levels. The precise ratio is dependent on the DNA concentration. For example, using 1 μg/ml DNA by the indirect method, the ratio of optimal PEI:DNA was about 10–13:1. However, the ratio increases to 33:1 for 0.1–0.2 μg/ml DNA. By testing several different molecular weights of the polycationic polymer we could show that the highest transfection efficiency was obtained with the PEI 25 kDa. Using PEI 25 kDa the indirect method is superior to the direct addition because significantly lower DNA concentrations are needed. The expression levels of the soluble human TNF receptor p55 are even higher at low DNA compared to 1 μg/ml plasmid. The EBV-based pREP vectors gave better transient gene expression when used in 293(EBNA) cells compared to HEK293 cells in suspension culture. No differences in expression levels in the two cell lines were observed when the pC1 (CMV)-TNFR was used. In conclusion, PEI is a low-toxic transfection agent which provides high levels of transient gene expression in 293(EBNA) cells grown in serum-free suspension culture. This system allows highly reproducible, cost-effective production of milligram amounts of recombinant proteins in 2–5 l spinner culture scale within 3–5 days. Fermentor scale experiments, however, are less efficient because the PEI-mediated transient tranfection is inhibited by conditioned medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Serum-free large-scale transient transfection of CHO cells   总被引:11,自引:0,他引:11  
To date, methods for large-scale transient gene expression (TGE) in cultivated mammalian cells have focused on two transfection vehicles: polyethylenimine (PEI) and calcium phosphate (CaPi). Both have been shown to result in high transfection efficiencies at scales beyond 10 L. Unfortunately, both approaches yield higher levels of recombinant protein (r-protein) in the presence of serum than in its absence. Since serum is a major cost factor and an obstacle to protein purification, our goal was to develop a large-scale TGE process for Chinese hamster ovary (CHO) cells in the absence of serum. CHO-DG44 cells were cultivated and transfected in a chemically defined medium using linear 25 kDa PEI as a transfection vehicle. Parameters that were optimized included the DNA amount, the DNA-to-PEI ratio, the timing and solution conditions for complex formation, the transfection medium, and the cell density at the time of transfection. The highest levels of r-protein expression were observed when cultures at a density of 2.0 x 10(6) cells/ml were transfected with 2.5 microg/ml DNA in RPMI 1640 medium containing 25 mM HEPES at pH 7.1. The transfection complex was formed at a DNA:PEI ratio of 1:2 (w/w) in 150 mM NaCl with a 10-min incubation at room temperature prior to addition to the culture. The procedure was scaled up for a 20-L bioreactor, yielding expression levels of 10  相似文献   

3.
Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon polyethyleneimine (PEI)-mediated transient gene delivery into HEK-293 cells cultured in suspension was investigated to understand the effect of different culture and transfection conditions as well as the significance of the culture age and the quality of the cell line used. Based on two different bicistronic model plasmids expressing the human erythropoietin gene (rHuEPO) in the first position and green fluorescent protein as reporter gene in the second position and vice versa, a completely serum-free transient transfection process was established. The process makes use of a 1:1 mixture of a special calcium-free DMEM and the FreeStyle™ 293 Expression Medium. Maximum transfectability was achieved by adjusting the ratio for complex formation to one mass part of DNA and three parts of PEI corresponding to an N/P (nitrogen residues/DNA phosphates) ratio of 23 representing a minimum amount of DNA for the polycation-mediated gene delivery. Applying this method, maximum transfectabilities between 70 and 96 % and a rHuEPO concentration of 1.6 μg mL−1 72 h post transfection were reached, when rHuEPO gene was expressed from the first position of the bicistronic mRNA. This corresponded to 10 % of the total protein concentration in the cell-free supernatant of the cultures in protein-free medium. Up to 30 % higher transfectabilities were found for cells of early passages compared to those from late passages under protein-free culture conditions. In contrast, when the same cells were propagated in serum-containing medium, higher transfectabilities were found for late-passage cells, while up to 40 % lower transfectabilities were observed for early-passage cells. Nucleotide pools were measured during all cell cultivations and the nucleoside triphosphate/uridine ratios were calculated. These ‘nucleotide ratios’ changed in an age-dependent manner and could be used to distinguish early- from late-passage cells. The observed effects were also dependent on the presence of serum in the culture. Nucleotide ratios were shown being applied to investigate the optimal passage number of cultured cell lines for achieving a maximum productivity in cultures used for transient gene expression. Furthermore, these nucleotide ratios proved to be different for transfected and untransfected cells, providing a high potential tool to monitor the status of transfection under various culture conditions.  相似文献   

4.
5.
瞬时基因表达可溶性的VEGFR2: I-IV   总被引:1,自引:0,他引:1  
通过RT-PCR的方法从三个月的流产绒毛组织中克隆目的基因VEGFR2 (Vascular endothelial growth factor receptor 2, 血管内皮细胞生长因子受体2) 胞外I-IV区, 连接到真核表达载体上构建了重组表达载体。首先在无血清悬浮培养的HEK293细胞中, 使用报告基因GFP(Green fluorescence protein, 绿色荧光蛋白)优化转染条件, 发现在转染时DNA: PEI=1:2 (W/W)、1.5 mg DNA/106 cells及开始转染4 h内使用无血清、摇床(120 r/min)时可以达到最佳的转染效率和细胞数量。在确定转染条件之后, 将构建的表达载体分别在HEK293细胞、COS-7细胞和CHO-K1细胞中进行瞬时转染表达, 结果发现仅在CHO-K1细胞的培养上清中检测到目的蛋白的表达。瞬时转染CHO-K1细胞至总体积约为1.5 L, 由于目的蛋白的羧基端有8-His标签, 通过Ni2+-IDA柱纯化得到5 mg左右的目的蛋白。  相似文献   

6.
通过RT-PCR的方法从三个月的流产绒毛组织中克隆目的基因VEGFR2 (Vascular endothelial growth factor receptor 2, 血管内皮细胞生长因子受体2) 胞外I-IV区, 连接到真核表达载体上构建了重组表达载体。首先在无血清悬浮培养的HEK293细胞中, 使用报告基因GFP(Green fluorescence protein, 绿色荧光蛋白)优化转染条件, 发现在转染时DNA: PEI=1:2 (W/W)、1.5 mg DNA/106 cells及开始转染4 h内使用无血清、摇床(120 r/min)时可以达到最佳的转染效率和细胞数量。在确定转染条件之后, 将构建的表达载体分别在HEK293细胞、COS-7细胞和CHO-K1细胞中进行瞬时转染表达, 结果发现仅在CHO-K1细胞的培养上清中检测到目的蛋白的表达。瞬时转染CHO-K1细胞至总体积约为1.5 L, 由于目的蛋白的羧基端有8-His标签, 通过Ni2+-IDA柱纯化得到5 mg左右的目的蛋白。  相似文献   

7.
The kinetics of polyethylenimine (PEI)-mediated gene transfer at early times after transfection of Chinese hamster ovary (CHO) cell in suspension were investigated using a novel in vitro assay. Addition of an excess of competitor DNA to the culture medium at various times after the initiation of transfection inhibited further cellular uptake of PEI–DNA particles. Using this approach, a constant rate of particle uptake was observed during the first 60 min of transfection at a PEI:DNA ratio of 2:1 (w/w) and a cell density of 2 × 106 cells/ml under serum-free conditions. The uptake rate declined considerably during the next 2 h of transfection. Both the rate and the level of PEI–DNA uptake in serum-free minimal medium were found to be dependent on the PEI–DNA ratio, the cell density at the time of transfection, and the extent of particle aggregation. These studies of the early phase of PEI-mediated transfection are expected to lead to further opportunities for optimization of gene transfer to suspension cultures of mammalian cells for the purpose of large-scale transient recombinant protein production.  相似文献   

8.
Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells with polyethylenimine (PEI) as a transfection reagent has been considered as an attractive method to produce recombinant proteins rapidly for pre-clinical studies. A high level of transfection efficiency, which is required for high-level TGE in CHO cells, can be achieved by increasing the PEI concentration. However, PEI induces cytotoxicity in a dose-dependent manner. To overcome this problem, Bcl-2 protein, an anti-apoptotic protein, was overexpressed in CHO cells (DG44). At a ratio of PEI to DNA (an N/P ratio) of 10, there were no significant differences in transfection efficiency and cell viability between Bcl-2 overexpressing and non-overexpressing cells. The transfection efficiency and cell viability were 2–11% and 83–92%, respectively. However, there were significant differences (P < 0.05) in the transfection efficiency and cell viability between them at a higher N/P ratio. At an N/P ratio of 40, the transfection efficiency and cell viability of Bcl-2 non-overexpressing cells were 24–38% and 35–40%, respectively, while those of Bcl-2 overexpressing cells were 48–53% and 43–56%, respectively. Furthermore, compared with Bcl-2 non-overexpressing cells, more DNAs entered the Bcl-2 overexpressing cells, resulting in a higher rate of TGE per cell. PE-Annexin V apoptosis revealed that Bcl-2 overexpression suppressed PEI-induced apoptotic cell death at high N/P ratios. Taken together, Bcl-2 overexpression in CHO cells suppresses apoptotic cell death during PEI-mediated transient transfection, resulting in enhanced transfection efficiency and TGE.  相似文献   

9.
Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this study, we report an enhancement of the transfection efficiency of plasmid DNA, via the use of positively charged colloidal gold nanoparticles (PGN). Plasmid DNA encoding for murine interleukin-2 (pVAXmIL-2) was complexed with PGN at a variety of ratios. The delivery of pVAXmIL-2 into C2C12 cells was dependent on the complexation ratios between PGN and the plasmid DNA, presented the highest delivery at a ratio of 2400:1. After complexation with DNA, PGN showed significantly higher cellular delivery and transfection efficiency than did the polyethylenimines (PEI) of different molecular weights, such as PEI25K (m.w. 25 kd) and PEI2K (m.w. 2 kd). PGN resulted in a cellular delivery of pVAXmIL-2 6.3-fold higher than was seen with PEI25K. The PGN/DNA complex resulted in 3.2- and 2.1-fold higher murine IL-2 protein expression than was seen in association with the PEI25K/DNA and PEI2K/DNA complexes, respectively. Following intramuscular administration, PGN/DNA complexes showed more than 4 orders of magnitude higher expression levels as compared to naked DNA. Moreover, the PGN/DNA complexes showed higher cell viability than other cationic nonviral vectors. Collectively, the results of this study suggest that the PGN/DNA complexes may harbor the potential for development into efficient and safe gene delivery vehicles.  相似文献   

10.
Brain capillary endothelial cells (BCECs) have been considered as one of the primary targets for cerebral gene therapy. However, the cells, well-known for their poor function of endocytosis, are difficult to be transfected by general non-viral vectors. The aim of this study was to enhance the efficiency of transfection and expression in BCECs of DNA/polymer nanoparticles with the modification of membrane-penetrating peptide, Antennapedia peptide (Antp) polyethylenimine (PEI) and polyamidoamine (PAMAM) were chosen to prepare Antp-modified DNA-loaded nanoparticles with a complex coacervation technique. After a 20-min transfection, the efficiency, in terms of transfection and expression, of DNA/PEI NP or DNA/PAMAM NP was enhanced significantly with the modification of Antp. After a 3-h transfection of DNA/Antp/PEI NP, there was no difference in cellular uptake but an enhancement in gene expression, compared to DNA/PEI NP alone. However, both the transfection and expression efficiency of DNA/PAMAM NP were enhanced using Antp. These observations suggest that Antp can increase the membrane-penetrating ability of DNA-loaded nanoparticles, which can be employed as novel non-viral gene vectors.  相似文献   

11.
Transfection efficiency is directly associated with the expression level and quantity of recombinant protein after the transient transfection of animal cells. The transfection process can be influenced by many still-unknown factors, so it is valuable to study the precise mechanism and explore these factors in gene delivery. Polyethylenimine (PEI) is considered to have high transfection efficiency and endosome-disrupting capacity. Here we aimed to investigate optimal conditions for transfection efficiency by setting different parameters, including salt ion concentration, DNA/PEI ratio, and incubation time. We examined the PEI–DNA particle size using a Malvern particle size analyzer and assessed the transfection efficiency using flow cytometry in Chinese hamster ovary-S cells. Salt ions, higher amounts of PEI tended to improve the aggregation of PEI–DNA particles and the particle size of PEI–DNA complexes and the transfection efficiency were increased. Besides, the particle size was also found to benefit from longer incubation time. However, the transfection efficiency increased to maximum of 68.92 % at an incubation time of 10 min, but decreased significantly thereafter to 23.71 %, when incubating for 120 min (P < 0.05). Besides, PEI–DNA complexes formed in salt-free condition were unstable. Our results suggest DNA and PEI incubated in 300 mM NaCl at a ratio of 1:4 for 10 min could achieve the optimal transfection efficiency. Our results might provide guidance for the optimization of transfection efficiency and the industrial production of recombinant proteins.  相似文献   

12.
We have previously demonstrated that lipoplex, a complex of cationic liposomes and DNA, could be targeted to human hepatic cells in vitro and in vivo by conjugation with bio-nanocapsules (BNCs) comprising hepatitis B virus (HBV) surface antigen L protein particles. Because the BNC-lipoplex complexes were endowed with the human hepatic cell-specific infection machinery from HBV, the complexes showed excellent specific transfection efficiency in human hepatic cells. In this study, we have found that polyplex (a complex of polyethyleneimine (PEI) and DNA) could form stable complexes with BNCs spontaneously. The diameter and ζ-potential of BNC-polyplex complexes are about 240 nm and +3.54 mV, respectively, which make them more suitable for in vivo use than polyplex alone. BNC-polyplex complexes with an N/P ratio (the molar ratio of the amine group of PEI to the phosphate group of DNA) of 40 showed excellent transfection efficiency in human hepatic cells. When acidification of endosomes was inhibited by bafilomycin A1, the complexes showed higher transfection efficiency than polyplex itself, strongly suggesting that the complexes escaped from endosomes by both fusogenic activity of BNCs and proton sponge activity of polyplex. Furthermore, the cytotoxicity is comparable to that of polyplex of the same N/P value. Thus, BNC-polyplex complexes would be a promising gene delivery carrier for human liver-specific gene therapy.  相似文献   

13.
BACKGROUND: Non-viral methods of gene delivery, especially using polyethylenimine (PEI), have been widely used in gene therapy or DNA vaccination. However, the PEI system has its own drawbacks, which limits its applications. METHODS: We have developed a novel non-viral delivery system based on PEI coated on the surface of bacterial magnetic nanoparticles (BMPs). The ability of BMPs-PEI complexes to bind DNA was determined by retardation of plasmid DNA in agarose gel electrophoresis. The transfection efficiency of BMPs-PEI/DNA complexes into eukaryotic cells was determined by flow cytometric analysis. The MTT assay was invited to investigate the cytotoxicity of BMPs-PEI/DNA complexes. The expression efficiency in vivo of BMPs-PEI bound to the plasmid pCMVbeta encoding beta-galactosidase was evaluated intramuscularly inoculated into mice. The immune responses of in vivo delivery of BMPs-PEI bound plasmid pcD-VP1 were determined by MTT assay for T cell proliferation and ELISA for detecting total IgG antibodies. RESULTS: BMPs-PEI complexes could bind DNA and provide protection from DNase degradation. The transfection efficiency of BMPs-PEI/DNA complexes was higher than that in PEI/DNA complexes. Interestingly, in contrast to PEI, the BMPs-PEI complex was less cytotoxic to cells in vitro. We further demonstrated that the BMPs-PEI system can deliver an exogenous gene to animals and allow it to be expressed in vivo. Such expression resulted in higher levels of humoral and cellular immune responses against the target antigen compared to controls. CONCLUSIONS: We have developed a novel BMPs-PEI gene delivery system with a high transfection efficiency and low toxicity, which presents an attractive strategy for gene therapy and DNA vaccination.  相似文献   

14.

Polyethylenimine (PEI)-based transient gene expression (TGE) is nowadays a well-established methodology for rapid protein production in mammalian cells, but it has been used to a much lower extent in insect cell lines. A fast and robust TGE methodology for suspension Hi5 (Trichoplusia ni) cells is presented. Significant differences in size and morphology of DNA:PEI polyplexes were observed in the different incubation solutions tested. Moreover, minimal complexing time (&lt; 1 min) between DNA and PEI in 150 mM NaCl solution provided the highest transfection efficiency. Nanoscopic characterization by means of cryo-EM revealed that DNA:PEI polyplexes up to 300–400 nm were the most efficient for transfection. TGE optimization was performed using eGFP as model protein by means of the combination of advanced statistical designs. A global optimal condition of 1.5 × 106 cell/mL, 2.1 μg/mL of DNA, and 9.3 μg/mL PEI was achieved through weighted-based optimization of transfection, production, and viability responses. Under these conditions, a 60% transfection and 0.8 μg/106 transfected cell·day specific productivity were achieved. The TGE protocol developed for Hi5 cells provides a promising baculovirus-free and worthwhile approach to produce a wide variety of recombinant proteins in a short period of time.

  相似文献   

15.
Three synthesis lots of linear poly(ethyleneimine) (PEI) are compared to a fully hydrolyzed linear PEI (commercially available as PEI "Max") regarding structure, polyplex formation with plasmid DNA, and transfection of suspension-adapted HEK-293E cells. PEI "Max" binds DNA more efficiently than the other PEIs, but it is the least effective in terms of transient recombinant protein yield. One PEI lot is fractionated by means of SEC. The fractions of high-M(n) PEI are the most efficient for complex formation and transfection. Nevertheless, the highest transient recombinant protein yields are achieved with unfractionated PEI. The results demonstrate that the polydispersity and charge density of linear PEI are important parameters for gene delivery to suspension-adapted HEK-293E cells.  相似文献   

16.
A novel non-viral gene delivery system comprised of a DNA/PEI/Alginate (DPA) polyplex was prepared and assessedin vitro andin vivo. Coating the positively charged DNA/PEI (DP) complex with a polyanion resulted in a high level ofin vitro reporter gene transfection in the presence of 50 vol% serum due to the minimized cytotoxicity of PEI and the reduced nonspecific interactions with serum components. Among the tested anionic polymers, which included sodium alginate, poly(methacrylic acid) and poly(acrylic acid), the sodium alginate showed the highest gene transfection efficiency. The DPA polyplex also showed a reduced level of erythrocyte aggregation in target cells when compared with the DP complex. According toin vivo studies in which reporter genes encoding green fluorescent protein (GFP) and luciferase were used, injection of the DPA polyplex into tumor cells in six week old female C57/BL6 mice resulted in a much higher level of GFP expression and approximately 7 fold higher luciferase expression than treatment with the DP complex. Taken together, these results demonstrated that the anionic alginate coating of the DP complex contributed to efficient gene deliveryin vitro andin vivo.  相似文献   

17.
With the emerging role of hematopoietic stem cells as potential gene and cell therapy vehicles, there is an increasing need for safe and effective nonviral gene delivery systems. Here, we report that gene transfer and transfection efficiency in human hematopoietic and cord blood CD34+ cells can be enhanced by the use of low molecular weight polyethylenimine (PEI). PEIs of various molecular weights (800-750,000) were tested, and our results showed that the uptake of plasmid DNA by hematopoietic TF-1 cells depended on the molecular weights and the N/P ratios. Treatment with PEI 2K (m.w. 2000) at an N/P ratio of 80/1 was most effective, increasing the uptake of plasmid DNA in TF-1 cells by 23-fold relative to Lipofectamine 2000. PEI 2K-enhanced transfection was similarly observed in hematopoietic K562, murine Sca-1+, and human cord blood CD34+ cells. Notably, in human CD34+ cells, a model gene transferred with PEI 2K showed 21,043- and 513-fold higher mRNA expression levels relative to the same construct transfected without PEI or with PEI 25 K, respectively. Moreover, PEI 2K-treated TF-1 and human CD34+ cells retained good viability. Collectively, these results indicate that PEI 2K at the optimal N/P ratio might be used to safely enhance gene delivery and transfection of hematopoietic and human CD34+ stem cells.  相似文献   

18.
The use of biocompatible polymeric gene carriers may overcome the current problems associated with viral vectors in safety, immunogenicity, and mutagenesis. Nontoxic water-soluble lipopolymer (WSLP), poly(ethylenimine)-co-[N-(2-aminoethyl) ethyleneimin]-co-N-(N-cholesteryloxycarbonyl-(2-aminoethyl)ethylenimine) was synthesized using branched poly(ethylenimine) (PEI, mw 1800) and cholesteryl chloroformate. Following synthesis and purification, the structure and molecular weight of WSLP were confirmed by (1)H NMR and MADI-TOF mass spectrometry, respectively. The percentage of cholesterol conjugated to PEI was about 47%, and the average molecular weight of WSLP was approximately 2000 Da. WSLP/pDNA complexes were prepared at different N/P (nitrogen atoms of WSLP/phosphate of plasmid DNA) ratios and characterized in terms of particle size, zeta potential, osmolarity, surface morphology, and cytotoxicity. WSLP condensed plasmid DNA when N/P ratio reached 2.5/1 and no free DNA was detected at N/P ratio of 5/1 and above, as determined by agarose gel electrophoresis. The mean particle size was in the range of 25.9 to 148.5 nm and was dependent on N/P ratios. Atomic force microscopy (AFM) showed complete condensation of plasmid DNA with spherical particles of approximately 50 nm in diameter. WSLP/pDNA complexes or WSLP itself were nontoxic to CT-26 colon adenocarcinoma and 293 T human embryonic kidney transformed cells when formulated at the N/P ratio of 10/1 and below as determined by MTT assay. In contrast, PEI25000/pDNA complexes were toxic to these cells. Erythrocytes aggregated when incubated with PEI25000/pCMV-Luc complexes at high DNA concentrations, but there was little aggregation with WSLP/pCMV-Luc complexes. WSLP/pCMV-Luc complexes demonstrated higher transfection efficiency in both CT-26 and 293 T cells compared to PEI25000- or PEI1800-based formulations. WSLP/pCMV-Luc complexes are nontoxic and showed enhanced in vitro transfection. Thus, WSLP will be a suitable carrier for in vivo gene delivery.  相似文献   

19.
We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG4 encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 microg mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn297 was not significantly affected by nocodazole during transient production by this method.  相似文献   

20.
BACKGROUND: Nonviral vectors based on polyethylenimine (PEI) usually contain an excess of PEI that is not complexed to DNA. Since unbound PEI contributes to cellular and systemic toxicity, purification of polyplexes from unbound PEI is desirable. METHODS: Size exclusion chromatography (SEC) was used to purify PEI polyplexes of free PEI. Transfection properties of purified polyplexes and the effect of free PEI on gene delivery were studied in vitro and in vivo after systemic application into mice. RESULTS: SEC did not change the size and zeta-potential of polyplexes. Independent of the amount of PEI used for complex formation, purified PEI polyplexes had the same final PEI nitrogen/DNA phosphate ratio of 2.5. Notably, purified PEI polyplexes demonstrated low cellular and systemic toxicity. High transfection efficiency was achieved with purified polyplexes at high DNA concentrations (8-15 microg/ml). At low DNA concentrations (2-4 microg/ml) gene transfer with purified particles was less efficient than with polyplexes containing free PEI both in vitro and in vivo. Mechanistic studies showed that free PEI partly blocked cellular association of DNA complexes but was essential for the following intracellular gene delivery. Adding free PEI to cells treated with purified particles with a delay of up to 4 h resulted in significantly enhanced transfection efficiency compared with non-purified particles or purified particles without free PEI. CONCLUSIONS: This study presents an efficient method to remove free PEI from PEI polyplexes by SEC. Our results from transfection experiments demonstrate that free PEI substantially contributes to efficient gene expression but also mediates toxic effects in a dose-dependent manner. Purified polyplexes without free PEI have to be applied at increased concentrations to achieve high transfection levels, but exhibit a greatly improved toxicity profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号