共查询到20条相似文献,搜索用时 0 毫秒
1.
We have characterized two cDNA clones from the nematode Caenorhabditis elegans that display similarity to the alcohol dehydrogenase (ADH) gene family. The nucleotide sequences of these cDNAs predict that they encode Zn-containing long-chain ADH enzymes. Phylogenetic analysis suggests that one is most similar to dimeric class III ADHs found in diverse taxa; the other is most similar to the tetrameric forms of ADH previously described only in fungi.
Correspondence to: J.J. Collins 相似文献
2.
3.
4.
5.
Information on the functional genomics of Caenorhabditis elegans has increased significantly in the last few years with the development of RNA interference. In parasitic nematodes, RNA interference has shown some success in gene knockdown but optimisation of this technique will be required before it can be adopted as a reliable functional genomics tool. Comparative studies in C. elegans remain an appropriate alternative for studying the function and regulation of some parasite genes and will be extremely useful for fully exploiting the increasing parasite genome sequence data becoming available. 相似文献
6.
Because arsenic is the most prevalent environmental toxin, it is imperative that we understand the mechanisms of metalloid detoxification. In prokaryotes, arsenic detoxification is accomplished by chromosomal and plasmid-borne operon-encoded efflux systems. Bacterial ArsA ATPase is the catalytic component of an oxyanion pump that is responsible for resistance to arsenite (As(III)) and antimonite (Sb(III)). Here, we describe the identification of a Caenorhabditis elegans homolog (asna-1) that encodes the ATPase component of the Escherichia coli As(III) and Sb(III) transporter. We evaluated the responses of wild-type and asna-1-mutant nematodes to various metal ions and found that asna-1-mutant nematodes are more sensitive to As(III) and Sb(III) toxicity than are wild-type animals. These results provide evidence that ASNA-1 is required for C. elegans' defense against As(III) and Sb(III) toxicity. A purified maltose-binding protein (MBP)-ASNA-1 fusion protein was biochemically characterized, and its properties compared with those of ArsAs. The ATPase activity of the ASNA-1 protein was dependent on the presence of As(III) or Sb(III). As(III) stimulated ATPase activity by 2 +/- 0.2-fold, whereas Sb(III) stimulated it by 4.6 +/- 0.15-fold. The results indicate that As(III)- and Sb(III)-stimulated ArsA ATPase activities are not restricted to bacteria, but extend to animals, by demonstrating that the asna-1 gene from the nematode, C. elegans, encodes a functional ArsA ATPase whose activity is stimulated by As(III) and Sb(III) and which is critical for As(III) and Sb(III) tolerance in the intact organism. 相似文献
7.
Several collagen genes have been isolated from the nematode Caenorhabditis elegans. The complete nucleotide sequences of two of these genes, col-1 and col-2, have been determined. These collagen genes differ from vertebrate collagen genes in that they contain only one or two introns, their triple-helical regions are interrupted by nonhelical amino acid sequences and they are smaller. A high degree of nucleotide and amino acid homology exists between col-1 and col-2. In particular, the regions around cysteines and lysines are most highly conserved. The C. elegans genome contains 50 or more collagen genes, the majority of which probably encode cuticle collagens; col-1 and col-2 apparently are members of this large family of cuticle collagen genes. 相似文献
8.
The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense. 相似文献
9.
Locus encoding a family of small heat shock genes in Caenorhabditis elegans: two genes duplicated to form a 3.8-kilobase inverted repeat. 总被引:13,自引:7,他引:13
下载免费PDF全文

The genes coding for hsp 16-48, previously identified by cDNA cloning, and for another 16-kilodalton heat shock protein designated hsp16-1 were characterized by DNA sequencing. The two genes were arranged in a head-to-head orientation. Both the coding and flanking regions were located within a 1.9-kilobase module which was duplicated exactly to form a 3.8-kilobase inverted repeat structure. The inverted repeat structure ended in an unusual guanine-plus-cytosine-rich sequence 24 nucleotides in length. The identity of the two modules at the nucleotide sequence level implies that the duplication event may have occurred recently. Alternatively, gene conversion between the two modules could also maintain homology of the two gene pairs. The small heat shock genes of Caenorhabditis elegans contained TATA boxes and heat-inducible promoters, the latter agreeing closely with the Drosophila melanogaster consensus sequence described by Pelham (Cell 30:517-528, 1982). Unlike the homologous D. melanogaster genes, each of these C. elegans genes contained a short intron, the position of which has been conserved in a related murine alpha-crystallin gene. The intron separated variable and conserved regions within the amino acid sequences of the encoded heat shock polypeptides. 相似文献
10.
11.
12.
The second division of the gut precursor E cells is lethally accelerated during Caenorhabditis elegans gastrulation by mutations in the emb-5 gene, which encodes a presumed nuclear protein. We have isolated suppressor mutations of the temperature-sensitive allele emb-5(hc61), screened for them among dpy and other mutations routinely used as genetic markers, and identified eight emb-5 suppressor genes. Of these eight suppressor genes, at least four encode extracellular matrix proteins, i.e., three collagens and one proteoglycan. The suppression of the emb-5 gastrulation defect seemed to require the maternal expression of the suppressors. Phenotypically, the suppressors by themselves slowed down early embryonic cell divisions and corrected the abnormal cell-division sequence of emb-5 mutant embryos. We propose an indirect stress-response mechanism to be the main cause of the suppression because: (1) none of these suppressors is specific, either to particular temperature-sensitive emb-5 alleles or to the emb-5 gene; (2) suppressible alleles of genes, reported here or elsewhere, are temperature sensitive or weak; (3) the suppression is not strong but marginal; (4) the suppression itself shows some degree of temperature dependency; and (5) none of the extracellular matrix proteins identified here is known to be expressed in oocytes or early embryos, despite the present observation that the suppression is maternal. 相似文献
13.
Cuticle collagen genes. Expression in Caenorhabditis elegans 总被引:3,自引:0,他引:3
Johnstone IL 《Trends in genetics : TIG》2000,16(1):21-27
Collagen is a structural protein used in the generation of a wide variety of animal extracellular matrices. The exoskeleton of the free-living nematode, Caenorhabditis elegans, is a complex collagen matrix that is tractable to genetic research. Mutations in individual cuticle collagen genes can cause exoskeletal defects that alter the shape of the animal. The complete sequence of the C. elegans genome indicates upwards of 150 distinct collagen genes that probably contribute to this structure. During the synthesis of this matrix, individual collagen genes are expressed in distinct temporal periods, which might facilitate the formation of specific interactions between distinct collagens. 相似文献
14.
15.
Wild-type and mutant actin genes in Caenorhabditis elegans 总被引:6,自引:0,他引:6
We have sequenced the four actin genes of Caenorhabditis elegans. These four genes encode typical invertebrate actins and are highly homologous, differing from each other by, at most, three amino acid residues. As a first step toward an understanding of the developmental regulation of this gene set we have also sequenced mutant actin genes. The mutant genes were cloned from two independent revertants of a single dominant actin mutant. For both revertants, reversion was accompanied by an actin gene rearrangement. The accumulation of actin mRNA during development in these two revertants is different from that of wild-type animals. We present here a correlation between actin gene structure and expression in wild-type and mutant animals. The results, suggest that co-ordinate regulation of actin genes is not essential for wild-type muscle function. In addition, it appears that changes in the 3' region of at least one of the actin mRNA may affect its steady-state regulation during development. 相似文献
16.
Jonathan Astin Alyce Merry Jeena Rajan Patricia E Kuwabara 《Briefings in Functional Genomics and Prot》2004,3(1):26-34
The nematode Caenorhabditis elegans is widely used as a model organism for studying many fundamental aspects of development and cell biology, including processes underlying human disease. The genome of C. elegans encodes over 19,000 protein-coding genes and hundreds of non-coding RNAs. The availability of whole genome sequence has facilitated the development of high throughput techniques for elucidating the function of individual genes and gene products. Furthermore, attempts can now be made to integrate these substantial functional genomics data collections and to understand at a global level how the flow of genomic information that is at the core of the central dogma leads to the development of a multicellular organism. 相似文献
17.
The formation of phytochelatins, small metal-binding glutathione-derived peptides, is one of the well-studied responses of plants to toxic metal exposure. Phytochelatins have also been detected in some fungi and some marine diatoms. Genes encoding phytochelatin synthases (PCS) have recently been cloned from Arabidopsis, wheat and Schizosaccharomyces pombe. Surprisingly, database searches revealed the presence of a homologous gene in the Caenorhabditis elegans genome, DDBJ/EMBL/GenBank accession no. 266513. Here we show that C. elegans indeed expresses a gene coding for a functional phytochelatin synthase. CePCS complements the Cd2+ sensitivity of a Schizosaccharomyces pombe PCS knock-out strain and confers phytochelatin synthase activity to these cells. Thus, phytochelatins may play a role for metal homeostasis also in certain animals. 相似文献
18.
19.
20.
The antagonistic pleiotropy theory of aging proposes that aging takes place because natural selection favors genes that confer benefit early on life at the cost of deterioration later in life. This theory predicts that genes that impact development would play a key role in shaping adult lifespan. To better understand the link between development and adult lifespan, we examined the genes previously known to be essential for development. From a pool of 57 genes that cause developmental arrest after inhibition using RNA interference, we have identified 24 genes that extend lifespan in Caenorhabditis elegans when inactivated during adulthood. Many of these genes are involved in regulation of mRNA translation and mitochondrial functions. Genetic epistasis experiments indicate that the mechanisms of lifespan extension by inactivating the identified genes may be different from those of the insulin/insulin-like growth factor 1 (IGF-1) and dietary restriction pathways. Inhibition of many of these genes also results in increased stress resistance and decreased fecundity, suggesting that they may mediate the trade-offs between somatic maintenance and reproduction. We have isolated novel lifespan-extension genes, which may help understand the intrinsic link between organism development and adult lifespan. 相似文献