首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J C Sarup  A Fridland 《Biochemistry》1987,26(2):590-597
Cell extracts from human leukemic T lymphoblasts and myeloblasts were chromatographed on DEAE-cellulose columns to separate purine deoxyribonucleoside, deoxyadenosine (dAdo) and deoxyguanosine (dGuo), phosphorylating activities. Three distinct purine deoxyribonucleoside kinases, a deoxycytidine (dCyd) kinase, an adenosine (Ado) kinase, and a deoxyguanosine (dGuo) kinase (the latter appears to be localized in mitochondria), were resolved. dCyd kinase contained the major phosphorylating activity for dAdo, dGuo, and 9-beta-D-arabinofuranosyladenine (ara-A). Ado kinase represented a second kinase for dAdo and ara-A while a third kinase for dAdo was found in mitochondria. dCyd kinase was purified about 2000-fold with ion-exchange, affinity, and hydrophobic chromatographies. On gel electrophoresis, both dCyd and dAdo phosphorylating activities comigrated, indicating that the activities are associated with the same protein. The enzyme showed a broad pH optimum ranging from pH 6.5 to pH 9.5. Divalent cations Mg2+, Mn2+, and Ca2+ stimulated dCyd kinase activity; Mg2+ produced the maximal activity. dCyd kinase from either lymphoid or myeloid cells showed broad substrate specificity. The enzyme used several nucleoside triphosphates, but ATP, GTP, and dTTP were the best phosphate donors. dCyd was the best nucleoside substrate, since dCyd kinase had an apparent Km of 0.3, 85, 90, and 1400 microM for dCyd, dAdo, dGuo, and ara-A, respectively. The enzyme exhibited substrate activation with both pyrimidine and purine deoxyribonucleosides, suggesting that there is more than one substrate binding site on the kinase. These studies show that, in lymphoblasts and myeloblasts, purine deoxyribonucleosides and their analogues are phosphorylated by dCyd kinase, Ado kinase, and dGuo kinase.  相似文献   

2.
A procedure for purifying human cytoplasmic and mitochondrial deoxycytidine kinase (NTP:deoxycytidine 5'-phosphotransferase, EC 2.7.1.74) was developed. Both purified isozymes have a similar molecular weight, activation energy and catalyze the reaction by a sequential mechanism. These two isozymes differ with respect to their substrate specificities. With cytoplasmic deoxycytidine kinase, ATP, GTP and TTP have the highest reaction velocity. Pyrimidine nucleoside triphosphates have higher affinity but lower V than purine nucleoside triphosphates. Cytidine and arabinosylcytidine can serve as substrates. With mitochondrial isozyme only ATP gives the highest reaction velocity. ATP and dATP have the same Km but different V values. Besides deoxycytidine, also deoxythymidine but not cytidine or arabinosylcytidine can serve as substrates. There are also differences between these two isozymes with respect to their sensitivity to inhibition. For cytoplasmic enzyme, Br5dCyd and Iodo5dCyd are not inhibitory. Both dCTP and UTP are competitive inhibitors (Ki 0.25 and 0.5 micronM, respectively) with respect to ATP. For mitochondrial isozyme both Br5dCyd and Iodo5dCyd are inhibitory and dCTP and TTP are competitive inhibitors (Ki 2 and 10 micronM, respectively) with respect to ATP.  相似文献   

3.
Deoxythymidine kinases (EC 2.7.1.--) induced in HeLa TK- cells by Herpes simplex Type I and Type II viruses both had a requirement for divalent cations. The enzymes had the highest activities in the presence of Mg2+, followed by Mn2+, Ca2+, Fe2+, and in that order, whereas they were inactive in the presence of Zn2+ and Cu2+. The amount of Mg2+ required for optimal activity was dependent on the amount of ATP present, so that optimal activities were found when the concentration of Mg2+ was equal to that of ATP; an excess of Mg2+ inhibited the reaction. The activities of various nucleoside triphosphates as phosphate donors for Herpes simplex virus Type I deoxythymidine kinase were in the order: ATP = dATP = ara ATP greater than CTP greater than dCTP greater than UTP greater than dUTP greater than GTP greater than dGTP. Those for Herpes simplex virus Type II deoxythymidine kinase were in the order: CTP greater than dCTP = ara CTP greater than dATP greater than ATP greater than UTP greater than GTP greater than dUTP = dGTP. For both deoxythymidine kinases induced by Herpes simplex virus, the nucleoside triphosphates tested exerted cooperative effects. The Km values of ATP and CTP for the Herpes simplex virus Type I enzyme were 30 and 70 muM respectively; whereas those for the Herpes simplex virus Typr II enzyme were 140 and 450 muM. Studies on binding of various thymidine analogs with free 5'-OH to these deoxythymidine kinases indicated that 5-substituted ethyl-, vinyl-, allyl-, propyl-, iodo- and bromo-dUrd as well as iodo5 dCyd and bromo5 dCyd had good affinity to both enzymes. In contrast, vinyl5 Urd, iodo5 Urd and arabinosylthymidine had good affinity only to the Herpes simplex virus Type I enzyme but not to the Herpes simplex virus Type II deoxythymidine kinase. All of these thymidine analogs were competitive inhibitors, with KI values in the range of 0.25 to 1.5 muM. Herpes simplex virus Type I deoxythymidine kinase was less sensitive to either dTTP or iodo dUTP inhibition than Herpes simplex virus Type II. Both dThd and dCyd could serve as substrates and competed with each other for Herpes simplex viruses Type I and Type II induced kinases, but they differed in their Km values for these enzymes. The Km values of dThd and dCyd were 0.59 muM and 25 muM for Herpes simplex virus Type I deoxythymidine kinase; while they were 0.36 muM and 88 muM respectively for the Herpes simplex virus Type II enzyme.  相似文献   

4.
Barroso JF  Elholm M  Flatmark T 《Biochemistry》2003,42(51):15158-15169
Human thymidine kinase 2 (hTK2) phosphorylates pyrimidine deoxyribonucleosides to the corresponding nucleoside monophosphates, using a nucleotide triphosphate as a phosphate donor. In this study, hTK2 was cloned and expressed at high levels in Escherichia coli as a fusion protein with maltose-binding protein. Induction of a heat-shock response by ethanol and coexpression of plasmid-encoded GroEL/ES chaperonins at 28 degrees C minimized the nonspecific aggregation of the hybrid protein and improved the recovery of three homooligomeric forms of the properly folded enzyme, i.e., dimer > tetramer > hexamer. The dimer and the tetramer were isolated in stable and highly purified forms after proteolytic removal of the fusion partner. Both oligomers contained a substoichiometric amount of deoxyribonucleotide triphosphates (dTTP > dCTP > dATP), known to be strong feedback inhibitors of the enzyme. Steady-state kinetic studies were consistent with the presence of endogenous inhibitors, and both oligomeric forms revealed a lag phase of at least approximately 5 min, which was abolished on preincubation with substrate (dThd or dCyd). The rather similar kinetic properties of the two oligomeric forms indicate that the basic functional unit is a dimer. Molecular docking experiments with a modeled hTK2 three-dimensional structure accurately predicted the binding positions at the active site of the natural substrates (dThd, dCyd, and ATP) and inhibitors (dTTP and dCTP), with highly conserved orientations obtained for all ligands. The calculated relative nonbonded interaction energies are in agreement with the biochemical data and show that the inhibitor complexes have lower stabilization energies (higher affinity) than the substrates.  相似文献   

5.
The total uptake, phosphorylation and incorporation of thymidine (dThd) and deoxycytidine (dCyd) were compared in intact and reversibly permeabilized human tonsillar lymphocytes. The total uptake of [3H]dThd was lower than that of [5-3H]dCyd, but almost all of [3H]dThd was incorporated into DNA. However, the main part of [5-3H]dCyd taken up by the lymphocytes was found in the pool as phosphorylated nucleoside (55%), and only a smaller part (13%) was incorporated into DNA. Phosphorylated nucleosides were determined by DEAE-cellulose sheets in the ethanol-soluble fraction of the cells. The reversible permeabilization of lymphocytes by Dextran T-150 destroys totally the [3H]dThd incorporation, while [5-3H]dCyd incorporation decreased only to 60% of intact cells. During permeabilization the phosphorylation of both nucleosides increased severalfold. After permeabilization all [3H]dThd was in dTMP form, while [5-3H]dCyd was also found in dCDP (3%) and dCTP (38%) form. In the meanwhile, 22% of thymidine kinase, 63% of deoxycytidine kinase and 98% of DNA polymerase activity were measured in permeabilized cells as compared to intact cells. The results suggest different relationships between the lymphocyte plasma membrane and the salvage pathways of the two pyrimidine nucleosides.  相似文献   

6.
Reaction of human UMP-CMP kinase with natural and analog substrates.   总被引:1,自引:0,他引:1  
UMP-CMP kinase catalyses an important step in the phosphorylation of UTP, CTP and dCTP. It is also involved in the necessary phosphorylation by cellular kinases of nucleoside analogs used in antiviral therapies. The reactivity of human UMP-CMP kinase towards natural substrates and nucleotide analogs was reexamined. The expression of the recombinant enzyme and conditions for stability of the enzyme were improved. Substrate inhibition was observed for UMP and CMP at concentrations higher than 0.2 mm, but not for dCMP. The antiviral analog l-3TCMP was found to be an efficient substrate phosphorylated into l-3TCDP by human UMP-CMP kinase. However, in the reverse reaction, the enzyme did not catalyse the addition of the third phosphate to l-3TCDP, which was rather an inhibitor. By molecular modelling, l-3TCMP was built in the active site of the enzyme from Dictyostelium. Human UMP-CMP kinase has a relaxed enantiospecificity for the nucleoside monophosphate acceptor site, but it is restricted to d-nucleotides at the donor site.  相似文献   

7.
Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bacterial dCK/dGK enzyme is known. Here we report the structure of such an enzyme, represented by deoxyadenosine kinase from Mycoplasma mycoides subsp. mycoides small colony type (Mm-dAK). Superposition of Mm-dAK with its human counterpart's deoxyguanosine kinase (dGK) and deoxycytidine kinase (dCK) reveals that the overall structures are very similar with a few amino acid alterations in the proximity of the active site. To investigate the substrate specificity, Mm-dAK has been crystallized in complex with dATP and dCTP, as well as the products dCMP and dCDP. Both dATP and dCTP bind to the enzyme in a feedback-inhibitory manner with the dN part in the deoxyribonucleoside binding site and the triphosphates in the P-loop. Substrate specificity studies with clinically important nucleoside analogs as well as several phosphate donors were performed. Thus, in this study we combine structural and kinetic data to gain a better understanding of the substrate specificity of the dCK/dGK family of enzymes. The structure of Mm-dAK provides a starting point for making new anti bacterial agents against pathogenic bacteria.  相似文献   

8.
The participation of Mg complex of nucleoside diphosphates and nucleoside triphosphates in the reverse and forward reactions catalyzed by purified carbamyl phosphokinase (ATP : carbamate phosphotransferase, EC 2.7.2.2) of Streptococcus faecalis R, ATCC-8043 were studied. The results of initial velocity studies of approx. 1 mM free Mg2+ concentration have indicated that in the reverse reaction MgdADP was as effective a substrate as MgADP. The phosphoryl group transfer from carbamyl phosphate to MgGDP, MgCDP and MgUDP was also observed at relatively higher concentrations of the enzyme and respective magnesium nucleoside diphosphate. In the forward direction MgdATP was found to be as efficient a phosphate donor as MgATP. On the other hand, Mg complexes of GTP, CTP and UTP were ineffective even at higher concentrations of the enzyme and respective magnesium nucleoside triphosphate. Product inhibition studies carried out at non-inhibitory level of approx. 1 mM free Mg2+ concentration have revealed that the enzyme has two distinct sites, one for nucleoside diphosphate or nucleoside triphosphate and the other for carbamyl phosphate or carbamate, and its reaction with the substrates is of the random type. Further tests of numerical values for kinetic constants have indicated that they are partially consistent with the Haldane relationship which is characteristic of rapid equilibrium and random mechanism.  相似文献   

9.
B Turk  R Awad  E V Usova  I Bj?rk  S Eriksson 《Biochemistry》1999,38(26):8555-8561
Deoxycytidine kinase (dCK) is an enzyme with broad substrate specificity which can phosphorylate pyrimidine and purine deoxynucleosides, including important antiviral and cytostatic agents. In this study, stopped-flow experiments were used to monitor intrinsic fluorescence changes induced upon binding of various phosphate donors (ATP, UTP, and the nonhydrolyzable analogue AMP-PNP) and the acceptor dCyd to recombinant dCK. Monophasic kinetics were observed throughout. The nucleotides as well as dCyd bound to the enzyme by a two-step mechanism, involving a rapid initial equilibrium step, followed by a protein conformational change that is responsible for the fluorescence change. The bimolecular association rate constants for nucleotide binding [(4-10) x 10(3) M-1 s-1] were 2-3 orders of magnitude lower than those for dCyd binding [(1.3-1.5 x 10(6) M-1 s-1]. This difference most likely is due predominantly to the large difference in the forward rate constants of the conformational changes (0.04-0.26 s-1 vs 560-710 s-1). Whereas the kinetics of the binding of ATP, UTP, and AMP-PNP to dCK showed some differences, UTP exhibiting the tightest binding, no significant differences were observed for the binding of dCyd to dCK in the presence or absence of phosphate donors. However, the binding of dCyd to dCK in the presence of ATP or UTP was accompanied by a 1.5- or 3-fold higher quenching amplitude as compared with dCyd alone or in the presence of AMP-PNP. We conclude that ATP and UTP induce a conformational change in the enzyme, thereby enabling efficient phosphoryl transfer.  相似文献   

10.
Nucleoside-diphosphate kinase is an enzyme which catalyzes the phosphorylation of nucleoside diphosphates into the corresponding triphosphates for nucleic acid biosynthesis. In this communication, we describe the purification and characterization of nucleoside-diphosphate kinase from yeast. The purified protein appears to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel analysis, with a molecular weight of about 17,000-18,000. An estimate from the fast protein liquid chromatography Superose 12 gel filtration shows a native molecular weight of about 68,000 to 70,000. The results suggest that yeast nucleoside-diphosphate kinase is composed of four subunits. Substrate specificity studies show that the relative activity of nucleoside diphosphates (NDP) as phosphate acceptors is in the order of dTDP greater than CDP greater than UDP greater than dUDP greater than GDP greater than or equal to dGDP greater than dCDP greater than dADP greater than ADP; and the relative activity of triphosphate donors is in the order of UTP greater than dTTP greater than CTP greater than dCTP greater than dATP greater than ATP greater than or equal to dGTP greater than GTP. The Km and Vm of dTDP, dGDP, dCDP, dUDP, CDP, and UDP have been determined. The rate constant studies indicate that the purified NDP kinase prefers using, to a slight extent, dTDP (approximately 800 min-1) as the substrate rather than other tested deoxyribo- and ribonucleotides (350-450 min-1). The broad substrate specificity and kinetic data suggest that the enzyme is involved in both DNA and RNA metabolism.  相似文献   

11.
Polynucleotide kinase (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) has been purified approx. 1500-fold from calf thymus. This enzyme phosphorylates 5'-hydroxyl termini in DNA using ATP as phosphate donor. RNA is phosphorylated at a much lower rate than DNA. The reaction requires the presence of a divalent cation, preferably Mg2+ or Mn2+ and is sensitive to sulfhydryl antagonists. The optimum pH for enzyme activity is 5.5. Enzyme activity is inhibited by low concentrations of inorganic sulfate and by some sulfate polymers. The kinase-catalyzed incorporation of the terminal phosphate of ATP into polynucleotides is inhibited by other nucleoside and deoxynucleoside triphosphates. The enzyme molecule has a molecular weight of about 70 000 and a Stokes radius of 4.3 nm. It has a frictional ratio of 1.44 indicating an asymmetrical structure. Calf thymus tissue should provide a useful alternative source for preparation of mammalian polynucleotide kinase.  相似文献   

12.
L S Lee  Y c Cheng 《Biochemistry》1976,15(17):3686-3690
Cytoplasmic and mitochondrial deoxythymidine kinase isozymes derived from the blast cells of acute myelocytic leukemia differ in their substrate specificity and kinetic behavior. These enzymes require divalent cations for their activity. The data suggest that the major role of idvalent cations is to chelate with ATP; the complex thus formed serves as the phosphate donor for the reaction. The activity of various triphosphate nucleosides as a phosphate donor for cytoplasmic deoxythymidine kinase is as follows: ATP = dATP greater than ara-ATP greater than GTP greater than CTP greater than dGTP = dCTP greater than dUTP, whereas for mitochondrial deoxythymidine kinase, the order of activity is ATP greater than CTP greater than UTP = dATP greater than ara-ATP greater than dGTP = dCTP greater than dUTP. Neither IdUTP nor dTTP could serve as a phosphate donor in the reaction catalyzed by either isozyme. From the many pyrimidine analogues tested for their binding affinity to each of these isozymes, I-dUrd and Br-dUrd had high good affinity which was equivalent to that of deoxythymidine. 5-Allyl-dUrd, 5-ethyl-dUrd, and 5-propyl-dUrd were only weakly bound to each isozyme. 5-I-dCyd, 5-Br-dCyd, dCyd, and 5-vinyl-dUrd were tightly bound to mitochondrial deoxythymidine kinase but not to the cytoplasmic isozyme. dTTP and I-dUTP are potent inhibitors of the reaction catalyzed by both isozymes. In contrast, dCTP and ara-CTP are potent inhibitors only of the mitochondrial isozyme, but not of the cytoplasmic isozyme. ATP-MG2+ acts as a sigmoidal substrate of the cytoplasmic isozyme with a"Km" of 0.22 mM, and as a regular substrate of the mitochondrial isozyme with a Km of 0.1 mM. Deoxythymidine acts as a regular substrate for both cytoplasmic and mitochondrial isozyme with a Km of 2.6 and 5.2 muM, respectively. Initial velocity as well as product inhibition studies suggest that the cytoplasmic isozyme catalyzes the reaction via a "sequential" mechanism. In contrast, mitochondrial deoxythymidine kinase catalyzes the reaction via a "ping-pong" mechanism.  相似文献   

13.
Uridine kinase (ATP: uridine 5'-phosphotransferase, EC 2.7.1.48) has been partially purified from ungerminated hybrid corn seed. It is associated with a soluble high molecular weight fraction from which it apparently cannot be dissociated without loss of activity. The stability of the enzyme is enhanced by the addition of dithiothreitol, glycerol and nucleotide substrate. The nucleoside specificity of the enzyme is limited to nucleosides containing pyrimidine and ribose moieties, such as uridine and cytidine. High concentrations of nucleosides cause substrate inhibition, however. The Km values for uridine and cytidine are 53 muM and 125 muM, respectively, and under subsaturating conditions uridine is phosphorylated about five times faster than cytidine. The reaction follows an ordered Bi Bi kinetic pattern, with ATP and ADP in competition for the free form of the enzyme. Purine, but not pyrimidine, nucleoside triphosphates serve as phosphate donors without regard to the sugar moiety. However, all of these triphosphates appear to compete for the same site on the enzyme. (Km ATP equals 590 muM, Km (app) GTP equals 61 muM, and CTP and UTP are linear competitive inhibitors against ATP, with Ki values of 60 muM and 240 muM, respectively.) Therefore, end product control of uridine kinase apparently does not involve allosteric sites, but instead is envisioned as simple competition between relatively effective or ineffective phosphate donors for a position on the enzyme.  相似文献   

14.
Thymidine kinase 2 (TK2), also called mitochondrial thymidine kinase, is a pyrimidine deoxyribonucleoside kinase expressed in all cells and tissues. It was recently purified to apparent homogeneity from human leukemic spleen and the active enzyme was shown to be a monomer of a 29-kDa polypeptide. The enzyme is feedback-inhibited by both end products, dCTP and dTTP. Here we show that TK2 purified from several different sources, including purified beef heart mitochondria, could be directly photoaffinity labeled with radioactive dTTP (approximately 18% of all TK2 molecules were cross-linked to dTTP after 20 min of ultraviolet irradiation) or to a lower extent with dCTP. Photo-incorporation was inhibited by the presence of the other effector but also the phosphate donor ATP blocked photolabeling, with dTTP. Addition of nucleoside substrates gave only a marginal inhibition of photo-incorporation. There were no detectable difference in the molecular size of photolabeled TK2 isolated from human spleen, brain or placenta, monkey liver, beef heart and beef heart mitochondria. Nor was there any significant differences in the enzyme kinetic properties of these enzymes. Cleavage of labeled TK2 with cyanogen bromide showed that dTTP was incorporated into a single 3-kDa peptide. TK2 was the only pyrimidine deoxynucleoside kinase expressed in liver, heart and brain. A detailed characterization of the subunit structure and substrate specificity of this enzyme is of importance for the design of new antiviral and cytostatic therapies based on nucleoside analogs.  相似文献   

15.
Recombinant human thymidine kinase 2 (hTK2) expressed in Escherichia coli has been found to bind tightly a substoichiometric amount of deoxyribonucleoside triphosphates (dTTP > dCTP > dATP), known to be strong feedback inhibitors of the enzyme. Incubation of hTK2 with the substrate dThd was able to release the dNTPs from the active site during purification from E. coli and thus allowed the kinetic characterization of the noninhibited enzyme, with the tetrameric hTK2 showing slightly higher activity than the most abundant dimeric form. The unliganded hTK2 revealed a lower structural stability than the inhibitor-bound enzyme forms, being more prone to aggregation, thermal denaturation, and limited proteolysis. Moreover, intrinsic tryptophan fluorescence (ITF), far-UV circular dichroism (CD), and limited proteolysis have revealed that hTK2 undergoes distinct conformational changes upon binding different substrates and inhibitors, which are known to occur in the nucleoside monophosphate kinase family. The CD-monitored thermal denaturation of hTK2 dimer/tetramer revealed an irreversible process that can be satisfactorily described by the two-state irreversible denaturation model. On the basis of this model, the parameters of the Arrhenius equation were calculated, providing evidence for a significant structural stabilization of the enzyme upon ligand binding (dCyd < MgdCTP < dThd < dCTP < dTTP < MgdTTP), whereas MgATP further destabilizes the enzyme. Finally, surface plasmon resonance (SPR) was used to study in real time the reversible binding of substrates and inhibitors to the immobilized enzyme. The binding affinities for the inhibitors were found to be 1-2 orders of magnitude higher than for the corresponding substrates, both by SPR and ITF analysis.  相似文献   

16.
Regulation of uridine kinase. Evidence for a regulatory site   总被引:2,自引:0,他引:2  
Uridine kinase from mouse Ehrlich ascites tumor cells may exist at 4 degrees C in multiple aggregation states that only slowly equilibrate with one another. Increasing the temperature leads to dissociation, and the appearance of a single predominant species: at 22 degrees C the enzyme exists as a tetramer. There is also a break in the dependence of enzyme activity on temperature as measured in an Arrhenius plot. The feedback inhibitors CTP and UTP cause the enzyme to dissociate to the monomer, whereas the substrate ATP reverses this process. Kinetic studies show that the monomer has little or no activity. Studies of the reaction mechanism show that binding of substrates is ordered, leading to a ternary complex, and release of products is ordered: uridine is the first substrate bound, ADP the first product released. Except for the inhibitors UTP and CTP, all other nucleoside triphosphates, whether purine or pyrimidine, or containing ribose or deoxyribose, act as phosphate donor. Especially interesting are the opposite effects of CTP and dCTP on uridine kinase: unlike CTP, dCTP does not dissociate the enzyme and is competent as a phosphate donor. We propose that the various effects of different ligands are best explained by the existence of a regulatory site (with more stringent specificity than the catalytic site) that controls dissociation of uridine kinase to the inactive monomer.  相似文献   

17.
Inorganic tripolyphosphate (PPP(i)) and pyrophosphate (PP(i)) were examined as potential phosphate donors for human deoxynucleoside kinase (dCK), deoxyguanosine kinase (dGK), cytosolic thymidine kinase (TK1), mitochondrial TK2, and the deoxynucleoside kinase (dNK) from Drosophila melanogaster. PPP(i) proved to be a good phosphate donor for dGK, as well as for dCK with dCyd, but not dAdo, as acceptor substrate, illustrating also the dependence of donor properties on acceptor. Products of phosphorylation were shown to be 5(')-phosphates. In striking contrast to ATP, the phosphorylation reaction follows strict Michaelis-Menten kinetics, with K(m) values of 74 and 92 microM for dCK and dGK, respectively, and V(max) values 40-50% that for ATP. With the other three enzymes, as well as for dCK with dAdo as acceptor, no, or only low levels (相似文献   

18.
Deoxynucleoside kinases catalyze the 5'-phosphorylation of 2'-deoxyribonucleosides with nucleoside triphosphates as phosphate donors. One of the cellular kinases, deoxycytidine kinase (dCK), has been shown to phosphorylate several L-nucleosides that are efficient antiviral agents. In this study we investigated the potentials of stereoisomers of the natural deoxyribonucleoside to serve as substrates for the recombinant cellular deoxynucleoside kinases. The cytosolic thymidine kinase exhibited a strict selectivity and phosphorylated only beta-D-Thd, while the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK) as well as dCK all had broad substrate specificities. TK2 phosphorylated Thd and dCyd stereoisomers in the order: beta-D- > or = beta-L- > alpha-D- > or = alpha-L-isomer. dCK activated both enantiomers of beta-dCyd, beta-dGuo, and beta-dAdo with similar efficiencies, and alpha-D-dCyd also served as a substrate. dGK phosphorylated the beta-dGuo enantiomers with no preference for the ribose configuration; alpha-L-dGuo was also phosphorylated, and beta-L-dAdo and beta-L-dCyd were substrates but showed reduced efficiencies. The anomers of the 2',3'-dideoxy-D-nucleosides (ddNs) were tested, and TK2 and dCK retained their low selectivities. Unexpectedly, alpha-dideoxycytidine (ddC) was a 3-fold better substrate for dCK than beta-ddC. Similarly, alpha-dideoxythymidine (ddT) was a better substrate for TK2 than beta-ddT. dGK did not accept any D-ddNs. Thus, TK2, dCK, and dGK, similar to herpes simplex virus type 1 thymidine kinase (HSV-1 TK), showed relaxed stereoselectivities, and these results substantiate the functional similarities within this enzyme family. Docking simulations with the Thd isomers and the active site of HSV-1 TK showed that the viral enzyme may in some respects serve as a model for studying the substrate specificities of the cellular enzymes.  相似文献   

19.
In extension of an earlier report, six non-conventional analogues of ATP, three adenosine-2'-triphosphates (3'-deoxy, 3'-deoxy-3'-fluoro- and 3'-deoxy-3'-fluoroxylo-), and three adenosine-3'-triphosphates (2'-deoxy-, 2'-deoxy-2'-fluoro- and 2'-deoxy-2'-fluoroara-), were compared with ATP as potential phosphate donors for human deoxycytidine kinase (dCK), cytosolic thymidine kinase (TK1), mitochondrial TK2, deoxyguanosine kinase (dGK), and the deoxyribonucleoside kinase (dNK) from Drosophila melanogaster. With one group of enzymes, comprising TK1, TK2, dNK and dCK (with dAdo as acceptor), only 3'-deoxyadenosine-2'-triphosphate was an effective donor (5-60% that for ATP), and the other five analogues much less so, or inactive. With a second set, including dCK (dCyd, but not dAdo, as acceptor) and dGK (dGuo as acceptor), known to share high sequence similarity (approximately 45% sequence identity), all six analogues were good to excellent donors (13-119% that for ATP). With dCK and ATP1, products were shown to be 5'-phosphates. With dCK, donor properties of the analogues were dependent on the nature of the acceptor, as with natural 5'-triphosphate donors. With dCK (dCyd as acceptor), Km and Vmax for the two 2'(3')-deoxyadenosine-3'(2')-triphosphates are similar to those for ATP. With dGK, Km values are higher than for ATP, while Vmax values are comparable. Kinetic studies further demonstrated Michaelis-Menten (non-cooperative) or cooperative kinetics, dependent on the enzyme employed and the nature of the donor. The physiological significance, if any, of the foregoing remains to be elucidated. The overall results are, on the other hand, highly relevant to studies on the modes of interaction of nucleoside kinases with donors and acceptors; and, in particular, to interpretations of the recently reported crystal structures of dGK with bound ATP, of dNK with bound dCyd, and associated modeling studies.  相似文献   

20.
S Ikeda  R P Swenson  D H Ives 《Biochemistry》1988,27(23):8648-8652
A highly efficient new affinity medium for deoxycytidine kinase, deoxycytidine 5'-tetraphosphate-Sepharose (dCp4-Sepharose), has been constructed. A dCp4-Sepharose column effects a one-step, 19,000-fold, purification to homogeneity of dCyd kinase from the ammonium sulfate fraction of Lactobacillus acidophilus R-26 extract, with 60% recovery. dCTP, a potent end-product inhibitor, is used as an eluent, and it also stabilizes the extremely labile purified enzyme. A noncompeting deoxyadenosine kinase activity accompanies the deoxycytidine kinase activity eluted. Native polyacrylamide gel electrophoresis shows a single protein band, which coincides with both deoxycytidine kinase and deoxyadenosine kinase activities at several gel concentrations. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide band of 26,000 daltons. Since the native enzyme is known to have an Mr of 50,000, it appears that the enzyme is composed of two subunits of similar size. Sequence analysis of the intact protein from the N-terminus reveals but a single amino acid species per residue up to the 17th residue; at the 18th, 21st, 26th, and 27th residue positions of the sequence, however, there appear to be two different amino acids in almost equal amounts. This may indicate that the enzyme is composed of two nonidentical subunits having the same amino acid sequence near the N-terminus. Residues 6-13 contain the highly conserved Gly-X-X-Gly-X-Gly-Lys sequence found at the active sites of kinases and other nucleotide-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号