首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pure glucocorticoid agonist RU 28362 and the potent antagonist RU 38486 were compared with dexamethasone for the evolution and the molecular nature of the GR during insulin-dependent conversion of 3T3-F442A preadipocytes into mature cells. In the whole cell assay system, the affinity for preadipocyte GR was observed in the order RU 38486 greater than RU 28362 greater than dexamethasone. The GR complex was most stable in presence of dexamethasone followed by the antagonist RU 38486 = the agonist RU 28362. Similar results were obtained in mature adipocytes but the binding of RU 38486 was more equivocal. An insulin-dependent differentiation process did not alter any of these parameters but increased the number of GR nearly fivefold over a 2-week period. Ion-exchange analysis of the cytosolic receptor revealed that the differentiation process was not accompanied by the appearance of any novel or new forms of GR, contrary to the situation in the liver, since both RU 38486 and dexamethasone were bound to identical molecular species of GR. These data provide a defined system for further analysis of cellular receptor as a function of steroid, tissue, and species, contrary to the classical dogma where GR is generally thought to be identical as a passive vehicle for the steroid in all circumstances, and affinity for steroid is generally equated with receptor stability.  相似文献   

2.
Manipulating the metabolism of glucocorticoids may serve as a useful adjunct in the treatment of breast cancer. The 11β-hydroxysteroid dehydrogenase type 2 enzyme (11βHSD2) potently inactivates glucocorticoids thereby protecting the non-selective mineralocorticoid receptor (MR) in fluid transporting tissues. In the present study, Western blot analysis showed the presence of 11βHSD2 in 66% of the breast tumor samples. The 11βHSD2 and MR are also present in the breast tumor cell line PMC42. Glycyrrhetinic acid abolished glucocorticoid metabolism and inhibited cell growth by 40%, the latter at concentrations consistent with glucocorticoid receptor (GR) and MR binding studies. Metabolism was increased by glucocorticoids, the anti-glucocorticoid RU 38486 and anti-mineralocorticoid spironolactone, while aldosterone had no effect. Neither cortisol nor aldosterone affected cell proliferation, but both RU 38486 and spironolactone caused a significant decrease in cell number. The effects of RU 38486 were only observed at micromolar concentrations and are inconsistent with an action via GR or progesterone receptor (PR). This study shows that 11βHSD2 activity and cell proliferation of PMC42 cells can be modulated via steroid receptors.  相似文献   

3.
The effect of hydrocortisone on interferon r(IFN-r) production by rat spleen cells and its mechanism were studied. The results showed that hydrocortisone inhibited IFN-r production at concentrations as low as 5.52 x 10(-10) M, with complete suppression at 5.52 x 10(-8) M, and the total number and survival rate of the cultured spleen cells were not apparently affected by 5.52 x 10(-8) M hydrocortisone. The inhibitory effect was dose-dependent when the concentration was from 5.52 x 10(-10) M to 5.52 x 10(-8) M and could be blocked by RU38486, a competitive antagonist of glucocorticoid. Our results suggested that glucocorticoid may inhibit IFN-r production through a receptor-mediated mechanism.  相似文献   

4.
Summary The effect of hydrocortisone (HC) in modulating glucocorticoid receptors (GR) and sodium-potassium adenosine triphosphatase (Na−K ATPase) activity was studied in primary cultures of immunoisolated murine proximal tubular epithelial cells (PTEC). Utilizing monoclonal antibody against stage-specific embryonic antigen-1, a homogeneous population of PTEC was obtained in high yield. The cells were cultured to confluence and further treated for 48 h in serum-free growth medium containing no HC (control); 50 nM HC; or 50 nM HC plus 20 nM of the antiglucocorticoid, RU 38486. PTEC treated with 50 nM HC had 56% of GR binding and 160% Na−K ATPase activity as compared to controls (P<0.01). GR binding was abolished by incubation in RU 38486 whereas Na−K ATPase fell below control values (P<0.05). Brief incubations of HC-treated PTEC with 0.5 mM ouabain resulted in a fall in GR binding without a change in Na−K ATPase activity. These data indicate that in PTEC, HC regulates GR binding and they suggest that stimulation of Na−K ATPase activity is a direct biological response to this receptor-hormone interaction. Thus, primary cultures of immunoaffinity-isolated PTEC offer a good model system for investigating the molecular basis underlying the regulation of GR binding and postreceptor events influenced by glucocorticoids.  相似文献   

5.
Angiotensinogen is synthesized in large amounts by Fao cells derived from the Reuber H35 rat hepatoma in a medium enriched with 5% fetal bovine serum (FBS). Treatment of FBS with dextran-coated charcoal removed endogenous steroids without modifying angiotensinogen production. This treatment allowed the study of the effects of steroids on angiotensinogen production. Hydrocortisone increased the angiotensinogen synthesis in a dose-dependent manner. The antiglucocorticoid RU 38486 did not change the basal rate of angiotensinogen production but inhibited the stimulation by hydrocortisone. Similar results were obtained with dexamethasone. Angiotensinogen biosynthesis seems to be regulated by two distinct mechanisms: (a) glucocorticoid independent, controlling the basal rate of angiotensinogen production and (b) glucocorticoid dependent, mediating the increased rate of angiotensinogen production upon glucocorticoid treatment.  相似文献   

6.
Dexamethasone-treated L6 (a rat cell line) and C2C12 (a mouse cell line) myotubes are frequently used as in vitro models of muscle wasting. We compared the effects of different concentrations of dexamethasone and corticosterone (the naturally occurring glucocorticoid in rodents) on protein breakdown rates, myotube size, and atrogin-1 and MuRF1 mRNA levels in the two cell lines. In addition, the expression of the glucocorticoid receptor (GR) and its role in glucocorticoid-induced metabolic changes were determined. Treatment with dexamethasone or corticosterone resulted in dose-dependent increases in protein degradation rates in both L6 and C2C12 myotubes accompanied by 25-30% reduction of myotube diameter. The same treatments increased atrogin-1 mRNA levels in L6 and C2C12 myotubes but, surprisingly, upregulated the expression of MuRF1 in L6 myotubes only. Both cell types expressed the GR and treatment with dexamethasone or corticosterone downregulated total cellular GR levels while increasing nuclear translocation of the GR in both L6 and C2C12 myotubes. The GR antagonist RU38486 inhibited the dexamethasone- and corticosterone-induced increases in atrogin-1 and MuRF1 expression in L6 myotubes but not in C2C12 myotubes. Interestingly, RU38486 exerted agonist effects in the C2C12, but not in the L6 myotubes. The present results suggest that muscle wasting-related responses to dexamethasone and corticosterone are similar, but not identical, in L6 and C2C12 myotubes. Most notably, the regulation by glucocorticoids of MuRF1 and the role of the GR may be different in the two cell lines. These differences need to be taken into account when cultured myotubes are used in future studies to further explore mechanisms of muscle wasting.  相似文献   

7.
The activity of RU38486 has been studied in Burkitt's lymphoma cells which are Epstein-Barr virus (EBV) positive. The early antigens (EA) of the virus are induced by dexamethasone (DXM) in Daudi but not in Raji cells, whereas a growth factor (transforming growth factor-beta, TGF-beta) induces the EA in both cell lines. RU38486 blocks the EA induction obtained by DXM or by TGF-beta in either cell line. In order to understand the interaction of RU38486, we considered its binding to specific receptors. We first investigated the binding of the antagonist in whole cells at 22 degrees C. A number of specific binding sites higher for RU38486 than for DXM was found, suggesting that RU38486 may bind to the glucocorticoid receptor and also to other cellular structures which we called the antiglucocorticoid binding sites ("AGBS"). To support this hypothesis, competition experiments have been conducted between RU38486 and other steroid hormones (progesterone and testosterone) since it is known that RU38486 is also able to interact with their cognate receptors. Binding studies of RU38486 in vitro at 4 degrees C in the presence of cytosolic extracts from Daudi and Raji cells led to conclusions similar to those drawn from the whole cell experiments: more complexes were formed with RU38486 than with DXM. Finally, the steroid-receptor complexes were incubated with DNA-cellulose. Since the binding measured for RU38486 was higher than for DXM, we suspect that sites different from the classical glucocorticoid receptor sites are also able to interact with DNA. The blockage exerted by RU38486 on the EA induced by glucocorticoids or by non-steroidal molecules and the lack of responsiveness to glucocorticoids in Raji cells are discussed in the light of the present findings.  相似文献   

8.
The kinetics of steroid binding to rat liver glucocorticoid receptor (GR) and receptor denaturation were dependent upon the nature of the molecule occupying GR. Both the agonist [triamcinolone acetonide (TA)] and the antagonist (Ru38486) however competed for the same saturable binding site. Despite opposing physiological action, both steroid analogues permitted receptor activation as evident by binding to DNA-cellulose and 9S to 4S shift on sucrose gradient sedimentation. It therefore seems necessary to reevaluate a current notion that antagonist action of RU38486 in rat liver is a result of impaired receptor activation.  相似文献   

9.
Summary Angiotensinogen is synthesized in large amounts by Fao cells derived from the Reuber H35 rat hepatoma in a medium enriched with 5% fetal bovine serum (FBS). Treatment of FBS with dextran-coated charcoal removed endogenous steroids without modifying angiotensinogen production. This treatment allowed the study of the effects of steroids on angiotensinogen production. Hydrocortisone increased the angiotensinogen synthesis in a dosedependent manner. The antiglucocorticoid RU 38486 did not change the basal rate of angiotensinogen production but inhibited the stimulation by hydrocortisone. Similar results were obtained with dexamethasone. Angiotensinogen biosynthesis seems to be regulated by two distinct mechanisms: (a) glucocorticoid independent, controlling the basal rate of angiotensinogen production and (b) glucocorticoid dependent, mediating the increased rate of angiotensinogen production upon glucocorticoid treatment. This work was supported in part by a grnat from Inserm (CRL 824022).  相似文献   

10.
The physicochemical properties of complexes formed between the glucocorticoid antagonist, RU38486, and the glucocorticoid receptor in rat thymus cytosol were investigated and compared with those of complexes formed with the potent agonist, triamcinolone acetonide. The equilibrium dissociation constant for the interaction of [3H]RU38486 with the molybdate-stabilized glucocorticoid receptor was lower than that for [1,2,4-3H]triamcinolone acetonide at 0 degree C but higher at 25 degrees C, suggesting that hydrophobic interactions play a major role in the binding of RU38486. Differences in equilibrium constants were reflected in corresponding differences in dissociation rate constants; association rate constants for the two steroids were similar. The rate of dissociation of [3H]RU38486 from the glucocorticoid receptor was higher in the absence of molybdate than in its presence both at 0 degree C and at 25 degrees C, suggesting that molybdate modifies the physical state of the antagonist-receptor complex, but other physical properties were similar both in the presence and in the absence of molybdate. The rate of inactivation of the unoccupied glucocorticoid receptor at 25 degrees C in the absence of molybdate was lower in phosphate buffer than in Tris-HCl buffer but the rate of dissociation of [3H]RU38486 was the same in both buffers. The binding of RU38486 afforded little, if any, protection against inactivation in either buffer; [3H]RU38486 dissociated irreversibly from the inactivated receptor at the same rate as from the non-inactivated complex but molybdate had no effect on the dissociation kinetics of the inactivated complex. It is concluded that RU38486 interacts with the ground state of the glucocorticoid receptor in a manner which neither promotes receptor transformation nor prevents receptor inactivation.  相似文献   

11.
Abstract Administration of bacterial lipopolysaccharide (LPS) into mice markedly induced the apoptosis of CD4+8+ thymocytes. The injection of anti-tumor necrosis factor (TNF)-α antibody or RU38486, a glucocorticoid receptor antagonist, into mice definitely inhibited LPS-induced apoptosis of thymocytes. Addition of the sera 1 h after injection of LPS into in vitro cultures of thymocytes caused thymocyte apoptosis. It was also prevented by either anti-TNF-α antibody or RU38486. Further, recombinant TNF-α and hydrocortisone collaborated in induction of the thymocyte apoptosis in vitro. The in vivo phenomenon of LPS-induced apoptosis of thymocytes was reproducible by the in vitro experimental system. It was therefore suggested that both TNF-α and glucocorticoid participate and collaborate as effector molecules in LPS-induced apoptosis of thymocytes.  相似文献   

12.
In an attempt to elucidate the relationship between the antiglucocorticoid effect and the state of differentiation of the target cells, we studied the metabolism of the potent antagonist in cultured liver and hepatoma cells (HTC, FAZA). After incubation of [3H]RU38486 with the cells for different periods of time, the native steroid and its metabolites were extracted and analyzed by thin layer chromatography. We observed that RU38486 was not metabolized in the transformed cell lines after a 3 h incubation. In contrast RU38486 was extensively metabolized in cultured liver cells. The observed degration could help explain why RU38486 inhibited tyrosine aminotransferase induction in hepatoma cells at a concentration 100 times lower than that needed in liver cells. Moreover this catabolism concerned specifically the antagonist RU38486 since other steroids tested (dexamethasone, promegestone) underwent a much slower degradation. Indirect experiments suggest that the alterations of the RU38486 molecule might be at least partially related to the cytochrome P-450 which is very active in the hepatocytes. This study was paralleled by testing the effect of the antagonist on the growth of hepatoma cells. RU38486 exerted an antiproliferative effect in absence of serum. On the basis of the low metabolism of RU38486 and of its antiproliferative effect in hepatoma cells. one can emphasize that RU38486 might represent a potential drug for use in cancer therapy.  相似文献   

13.
RU 38486: a potent antiglucocorticoid in vitro and in vivo   总被引:7,自引:0,他引:7  
The antiglucocorticoid activity of RU 38486, was studied both in vitro and in vivo. In vitro studies, RU 38486 was characterized by a high affinity (3 times higher than that of dexamethasone) for the cytosolic glucocorticoid receptor in rat hepatoma tissue culture (HTC) cells. This high affinity was due to a very low dissociation rate of the complexes formed with the receptor. In whole cells it was a potent full antagonist of dexamethasone-induced tyrosine aminotransferase (TAT) activity: the IC50 was 6-7 times lower than the concentration of the dexamethasone used. It was devoid of any glucocorticoid activity up to a concentration of 10 microM. In in vivo studies using adrenalectomized rats, RU 38486 totally inhibited dexamethasone-induced hepatic tryptophan oxygenase (TO) activity. It is also the first pure antagonist of dexamethasone-induced hepatic TAT. However, doses as high as 5 mg/kg of body weight were required for a 50% inhibition of the effect of dexamethasone at 0.01 mg/kg. RU 38486 did not display any glucocorticoid effect on these two responses up to 50 mg/kg.  相似文献   

14.
Four antiglucocorticoids, RU38486, RU5020, RU25055 and progesterone were found to antagonize the induction of latent Epstein-Barr virus (EBV) information by dexamethasone. The dose response studies show that the antagonization was more prominent with the synthetic steroids than with the natural hormone. Specific binding characteristics of dexamethasone measured in whole cells indicate the presence of glucocorticoid receptors. Total cellular receptor contents deduced from binding data give values similar to those reported for B-lymphoblasts. Competition experiments between dexamethasone and RU38436 strongly suggest that RU38486 binds to two distinct sites in the whole cell; one is the glucocorticoid receptor but the nature of the other site is unknown. Inhibition by antiglucocorticoids differs from antagonism by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) since the latter does not compete for any sites interacting with RU38486.  相似文献   

15.

Background

Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively.

Results

Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively.

Conclusions

Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders.  相似文献   

16.
We have developed a new ligand-dependent chimeric recombinase (Cre-GRdex) by fusing the site-specific Cre recombinase to the ligand binding domain (LBD) of a mutant human glucocorticoid receptor (GRdex). The synthetic glucocorticoid receptor (GR) ligands dexamethasone, triamcinolone acetonide and RU38486efficiently induce recombinase activity in F9 murine embryonal carcinoma cells expressing constitutively Cre-GRdex. In contrast, no recombinase activity was detected in the absence of ligand or in the presence of the natural GR ligands corticosterone, cortisol or aldosterone. Moreover, physiological concentrations of these natural GR ligands do not affect Cre-GRdexrecombinase activity induced by dexamethasone. Thus, as previously shown using Cre-oestrogen receptor (ER) fusion proteins, Cre-GRdexmight be useful for achieving loxP site-directed mutagenesis in cultured cells and spatio-temporally controlled somatic cell mutagenesis in transgenic mice.  相似文献   

17.
The data reported here demonstrate that the synthetic steroid RU 38486 functions as an optimal antagonist in the glucocorticoid-sensitive human leukemic cell line CEM-C7. This steroid blocks the ability of the potent agonist triamcinolone acetonide (TA) to induce glutamine synthetase activity and to ultimately cause cell lysis, but when given alone does not exhibit partial agonist activity. Both [3H]RU 38486 and [3H]TA bind with high affinity and specificity to cytosolic glucocorticoid receptors in this cell line. However, under a variety of in vitro conditions (elevated temperature and presence of exogenous ATP), [3H]TA promotes receptor activation more effectively than [3H]RU 38486. This difference in the extent of activation was verified by two independent techniques: DEAE-cellulose chromatography and DNA-cellulose binding. [3H]RU 38486 and [3H]TA dissociate at the same rate from the unactivated receptors but at 25 degrees C (not 0 degree C) [3H]RU 38486 dissociates slightly more rapidly from the activated receptors. The defective receptors in the glucocorticoid-resistant subclone 3R7 appear to be "activation labile" (rapid dissociation of ligand from activated form) using either tritiated steroid. Once activated in vivo, the CEM-C7 [3H]TA- and [3H]RU 38486-receptor complexes undergo similar nuclear translocation and those activated complexes generated in vitro appear to bind to nonspecific DNA-cellulose with the same relative affinities. Thus the precise mechanism(s) by which RU 38486 exerts its potent antiglucocorticoid effect in this human cell line cannot be easily explained in terms of a defect in one of the crucial steps (specific high affinity binding, activation, translocation, DNA binding) required to elicit a physiological response. However, the data presented here do suggest that when comparing an antagonist and agonist which both bind to receptors with the same relative high affinity, the agonist may be more effective in facilitating the conformational change associated with in vitro activation.  相似文献   

18.
Patients with apparent mineralocorticoid excess (AME) have low or absent activity of the enzyme 11 beta OH steroid dehydrogenase (11SD), and inappropriately high intrarenal levels of cortisol resulting in Na+ retention and hypertension. Pseudohypoaldosteronism (PHA), in contrast, is characterized by salt wasting despite hyperaldosteronemia, reflecting low or absent mineralocorticoid receptors (MR). Although AME is presumed to reflect inappropriate cortisol occupancy of MR, several features also suggest inappropriate occupancy of glucocorticoid receptors (GR). To test this possibility, we administered carbenoxolone, which is known to block 11SD, to four patients with PHA, and observed marked mineralocorticoid effects, e.g., antinatriuresis and elevated plasma bicarbonate. To further test the possibility that occupancy of renal GR may induce a classical mineralocorticoid response, we administered the highly specific glucocorticoid RU 28362 to adrenalectomized rats and showed that it has profound antinatriuretic effects. Finally, by selectively blocking MR with RU 28318 or GR with RU 38486, we have shown that corticosterone, the physiologic glucocorticoid in rats, has an antinatriuretic effect in adrenalectomized rats via either MR or GR occupancy. Previous studies have clearly shown that MR are inherently nonselective and have equivalent intrinsic affinity for aldosterone, corticosterone, and cortisol. The present studies suggest that this nonselectivity includes the nuclear response element to which either MR or GR may bind to elicit a mineralocorticoid effect, and further underscore the importance of the enzyme 11SD in the specific mineralocorticoid action of aldosterone.  相似文献   

19.
20.
In the present study the effects of intracerebroventricular (icv) and intrahippocampal administration of corticosteroid antagonists on basal hypothalamic-pituitary-adrenal (HPA) activity around the diurnal peak were compared in male Wistar rats. In two separate experiments the glucocorticoid receptor (GR) antagonist RU 38486 and the mineralocorticoid receptor (MR) antagonist RU 28318 were tested. One hour after GR antagonist injection, significant increases in plasma ACTH and corticosterone levels were observed in the icv treated rats, when compared to vehicle. In contrast, a significant decrease in ACTH levels, and a slight, but non-significant decrease in corticosterone concentrations were attained one hour after intrahippocampal injection of the GR antagonist. Injection of the MR antagonist, on the other hand, resulted in enhanced ACTH and corticosterone levels irrespective of the site of injection. These findings suggest that negative feedback inhibition at the circadian peak involves hippocampal MRs and extrahippocampal (hypothalamic) GRs. The latter feedback inhibition overrides a positive feedback influence exerted by endogenous corticosteroids through hippocampal GRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号