首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although sound production requires energy, it has been unclear how much singing increases metabolic rate in passerine birds. We measured the rate of oxygen consumption of two breeds of canary that sang inside a respirometry chamber. Metabolic rate increased with the proportion of time that birds spent singing. Average metabolic rate during singing at 15-20°C was 1.05-1.07 times that of standing quietly in the same temperature range or 2.2-2.6 times basal metabolic rate (BMR). Whether an increase in metabolic rate during song of this order would represent a fitness cost to free-living passerine birds would depend upon the circumstances. Singing rather than perching during the day would raise metabolic rate only slightly. Singing at night or at dawn, instead of sleeping with a metabolic rate closer to BMR, would cause a greater increase in metabolism. Birdsong could act as a condition-dependent signal, since birds that are easily able to achieve energy balance could afford the cost of singing, but those close to their energy limits might not. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.   相似文献   

2.
The metabolic energy cost of walking is determined, to a large degree, by body mass, but it is not clear how body composition and mass distribution influence this cost. We tested the hypothesis that walking would be most expensive for obese women compared with obese men and normal-weight women and men. Furthermore, we hypothesized that for all groups, preferred walking speed would correspond to the speed that minimized the gross energy cost per distance. We measured body composition, maximal oxygen consumption, and preferred walking speed of 39 (19 class II obese, 20 normal weight) women and men. We also measured oxygen consumption and carbon dioxide production while the subjects walked on a level treadmill at six speeds (0.50-1.75 m/s). Both obesity and sex affected the net metabolic rate (W/kg) of walking. Net metabolic rates of obese subjects were only approximately 10% greater (per kg) than for normal-weight subjects, and net metabolic rates for women were approximately 10% greater than for men. The increase in net metabolic rate at faster walking speeds was greatest in obese women compared with the other groups. Preferred walking speed was not different across groups (1.42 m/s) and was near the speed that minimized gross energy cost per distance. Surprisingly, mass distribution (thigh mass/body mass) was not related to net metabolic rate, but body composition (% fat) was (r2= 0.43). Detailed biomechanical studies of walking are needed to investigate whether obese individuals adopt novel energy saving mechanisms during walking.  相似文献   

3.
—The concentration of ATP, ADP, AMP, phosphocreatine and of 5 intermediates of carbohydrate metabolism were determined in rodent brain after single and repeated seizures induced by either electroshock (ES), flurothyl or pentylenetetrazol (PTZ). In paralysed-ventilated rats, one ES produced a 4–5 fold increase in cortical glycolytic flux (estimated from changes in glucose and lactate), and associated increases in pyruvate and in the lactate/pyruvate ratio. Total high energy phosphates declined during the seizure; a decrease was also calculated in cortical tissue pH and in the cytoplasmic [NAD+]/[NADH] ratio. Similar changes in brain were observed in ventilated mice after ES, but in paralysed animals, no decrease in high energy phosphates occurred during the first seizure. More vigorous and prolonged chemically-induced seizures in both rats and mice elicited a decrease in the cerebral energy reserves with a rise in lactate and in the lactate/pyruvate ratio. At all times during the seizures the cerebral venous blood had a higher oxygen tension than that of control animals (rats) or was visibly reddened (mice), implying that oxygen availability to brain exceeded metabolic demands. It is proposed that the development of‘non-hypoxic’cerebral lactacidosis during seizures is part of the overall metabolic response of the brain to an abrupt increase in energy consumption. The response constitutes a homeostatic influence which promotes cerebral vasodilatation, thereby increasing blood flow and the delivery of substrates. With repeated seizures, delivered 2 min apart, glycogen declined progressively, but concentrations of the adenine nucleotides appeared to plateau, suggesting that a new energy balance had been established. However, after 20–25 seizures, the attacks became self-generating and there was a further reduction in the tissue high energy phosphate stores, a fall in brain glucose and in the brain/blood glucose ratio. It is concluded that the brain possesses a limited capacity to adjust its metabolism to meet the increased energy requirements of single or repeated seizures, but that this mechanism ultimately fails during status epilepticus unless the abnormal electrical discharges, themselves, are brought under control.  相似文献   

4.
Colonial nesting is rare in birds of prey. In this study we develop further Pennycuick's (1979 ) model of energy balance to consider the implications of colonial nesting for the breeding ecology of Ruppell's griffon vultures. To achieve a realistic foraging range, and remain in energy balance, the birds need to do more than fill their crop once on each foraging trip. They must remain in the feeding area and digest some of this food and refill the crop to obtain sufficient energy to pay for the flight costs and have sufficient energy to satisfy their own requirements and that of the chick. Given the known distances that the birds have to travel to forage, it would be impossible for them to rear more than one chick. The low growth rate of griffon vulture chicks may be an adaptation to the low rate at which energy can be delivered by the parents. The optimal time for a bird to be away from the nest changes with the distance they have to travel. Assuming that one parent remains on the nest at all times to guard the chick, it is optimal for both parents to take turns to forage on the same day if the distance to a feeding area is under 150 km, but to switch to each parent being away for a whole day when the distance is greater than this. Soaring flight is essential for such a scavenger, because of the low energy expenditure. If a vulture relied on the more energetically demanding flapping flight its maximum foraging range would be under 40 km. Griffon vultures are known to be able to depress their basal metabolic rate, and this has major implications for their foraging range, which then becomes constrained by the flight speed rather than by the amount of food they need to obtain. Griffon vultures minimize energy expenditure on all activities, because even small increases in their energy demands have a large impact on the foraging range that the bird can use.  相似文献   

5.
A comprehensive metabolic network was proposed forAlcaligenes faecalis and employed in a stoichiometrically based flux balance model for curdlan production optimization. The maximal yield of curdlan was evaluated for curdlan batch production. Various metabolic structures and metabolic pathway distributions related with the curdlan maximal yield was evaluated. The results showed that the energy efficiency rather than the substrate supply was the major constraint for the enhancement of curdlan production. The increase in specific rate of glucose uptake could enhance curdlan production yield due to the decrease of the ratio of metabolic maintenance to substrate consumption. However, some of the energy loss and nutrient limitation associated with the increase of metabolic maintenance would adversely affect the conversion efficiency of the substrate.  相似文献   

6.
动物稳定体重的维持需要能量摄入和消耗之间的平衡。运动是影响动物能量平衡的重要因素之一。为了解运动对大绒鼠(Eothenomys miletus)的生理学效应,在室内条件下,测定了强迫运动训练(运用小鼠封闭跑台)8周后大绒鼠的体重、代谢率、摄入能、血清瘦素和身体组成的变化。结果显示,强迫运动训练8周对大绒鼠的体重无显著影响;大绒鼠的代谢率和摄入能均显著增加,训练8周后静止代谢率较对照组增加了29.9%,运动最大代谢率较对照组增加了10.7%;强迫运动训练8周组的身体脂肪重量比对照组降低了28.9%,血清瘦素水平比对照组下降了27.4%,对照组的瘦素与体脂含量具有明显的相关性,但运动组则不具有相关性;运动组的肝重量和消化道重量较对照组均显著增加;而体水重量则显著降低。这些结果表明,在强迫运动训练期间大绒鼠主要通过动员储存的脂肪、增加代谢率和食物摄入的方式来维持自身的体重及能量平衡。瘦素在长期强迫运动过程中对身体脂肪含量的变化具有调节作用。  相似文献   

7.
Metabolic adjustments occur with weight loss that may contribute to a high rate of weight regain. We have previously observed in obesity-prone, obese rats that weight reduction is accompanied by a suppression in resting metabolic rate beyond what would be predicted for the change in metabolic mass. In the present study, we examine if this adjustment in metabolic efficiency is affected by the length of time in weight maintenance and if it contributes to the propensity to regain after weight loss. Twenty-four-hour, nonresting, and resting energy expenditure (REE) were obtained by indirect calorimetry and normalized to metabolic mass estimated by dual-energy X-ray absorptiometry. A 10% loss in body weight in weight-reduced rats was accompanied by a 15% suppression in adjusted REE. This enhancement in metabolic efficiency was not altered with either 8 or 16 wk of weight maintenance, but it did resolve when the forced control of intake was removed and the weight was regained. The rate of weight regain increased with the time in weight maintenance and was exceptionally high early during the relapse period. During this high rate of weight gain, the suppression in REE persists while consumption increases to a level that is higher than when they were obese. In summary, an enhanced metabolic efficiency and an elevated appetite both contribute (60% and 40%, respectively) to a large potential energy imbalance that, when the forcible control of energy intake is relieved, becomes actualized and results in an exceptionally high rate of weight regain.  相似文献   

8.
The role of exercise in thermogenesis and energy balance   总被引:6,自引:0,他引:6  
The role of exercise training in energy balance has been reviewed. Recent well-conducted studies showed that exercise may increase energy expenditure not only during the period of exercise itself but during the postexercise period as well. This notion of excess postexercise oxygen consumption (EPOC), which has been a controversial issue for many years, is now becoming a generally well-accepted concept, the consensus being that EPOC takes place following prolonged and strenuous exercise bouts. Besides, the role of EPOC in long-term energy balance remains to be determined. Long-term energy balance studies carried out in rats show that exercise affects energy balance by altering food intake and promoting energy expenditure. In male rats exercise causes a marked decrease in energy intake which contributes, in association with the expenditure of exercise itself, to retard lean and fat tissue growth. From the suppressed deposition of lean body mass, decreases in basal metabolic rate can be predicted in males. In female rats, exercise does not affect food intake; the lower energy gain of exercise-trained females results from the elevated expenditure rate associated with exercise itself. In both male and female rats, there is no evidence that exercise training affects energy expenditure other than during exercise itself unless the habitual feeding pattern of the rats is radically modified. The interactive effects of diet and exercise, which have to be further investigated in long-term energy balance, emerge as a promising area of research.  相似文献   

9.
Sexually selected displays, such as bird song, are expected to be costly. We examined a novel potential cost to bird song: whether a less favourable microclimate at exposed song posts would be predicted to raise metabolic rate. We measured the microclimate and height at which willow warblers Phylloscopus trochilus sang and foraged. Song posts were higher than foraging sites. The wind speed was 0.6±0.3 ms−1 greater at song posts (mean±SD, N=12 birds). Song rate and song post selection were not influenced consistently by temperature or wind speed, but the birds sang from lower positions on one particularly windy day. This may have resulted from difficulty in holding on to exposed branches in windy conditions rather than a thermoregulatory constraint. The results suggest that the extra thermoregulatory costs at song posts would increase metabolic rate by an average of 10±4% and a maximum of 25±8% (N=12 birds) relative to birds singing at foraging sites. We estimated that metabolic rate would be 3–8% greater during singing than during quiet respiration because of heat and evaporative water loss in exhaled gases. The combined energy requirements for sound production, thermoregulation at exposed song posts and additional heat loss in exhaled air could increase the metabolic rate of willow warblers by an average of 14–23%, and a maximum of 42–63%, during singing. The energetic cost of singing may thus be much greater for birds in a cold, windy environment than for birds singing in laboratory conditions.  相似文献   

10.
The costs of different modes of bipedalism are a key issue in reconstructing the likely gait of early human ancestors such as Australopithecus afarensis. Some workers, on the basis of morphological differences between the locomotor skeleton of A. afarensis and modern humans, have proposed that this hominid would have walked in a 'bent-hip, bent-knee' (BHBK) posture like that seen in the voluntary bipedalism of untrained chimpanzees. Computer modelling studies using inverse dynamics indicate that on the basis of segment proportions AL-288-1 should have been capable of mechanically effective upright walking, but in contrast predicted that BHBK walking would have been highly ineffective. The measure most pertinent to natural selection, however, is more likely to be the complete, physiological, or metabolic energy cost. We cannot measure this parameter in a fossil. This paper presents the most complete investigation yet of the metabolic and thermoregulatory costs of BHBK walking in humans. Data show that metabolic costs including the basal metabolic rate (BMR) increase by around 50% while the energy costs of locomotion and blood lactate production nearly double, heat load is increased, and core temperature does not return to normal within 20 minutes rest. Net effects imply that a resting period of 150% activity time would be necessary to prevent physiologically intolerable heat load. Preliminary data for children suggest that scaling effects would not significantly reduce relative costs for hominids of AL-288-1's size. Data from recent studies using forwards dynamic modelling confirm that similar total (including BMR) and locomotor metabolic costs would have applied to BHBK walking by AL-288-1. We explore some of the ecological consequences of our findings.  相似文献   

11.
The long necks of gigantic sauropod dinosaurs are commonly assumed to have been used for high browsing to obtain enough food. However, this analysis questions whether such a posture was reasonable from the standpoint of energetics. The energy cost of circulating the blood can be estimated accurately from two physiological axioms that relate metabolic rate, blood flow rate and arterial blood pressure: (i) metabolic rate is proportional to blood flow rate and (ii) cardiac work rate is proportional to the product of blood flow rate and blood pressure. The analysis shows that it would have required the animal to expend approximately half of its energy intake just to circulate the blood, primarily because a vertical neck would have required a high systemic arterial blood pressure. It is therefore energetically more feasible to have used a more or less horizontal neck to enable wide browsing while keeping blood pressure low.  相似文献   

12.
In analogy to “specific gravity” or “specific heat” the expression “weight specific metabolic rate” (Ultsch, 1973) would be correct if the metabolic rate were directly proportional to body weight. In that case the quotient metabolic rate divided by body weight would be a constant, independent of body weight like density or specific heat are constants. The metabolic rate, however, is not proportional to body weight but to its 34 power. I have stated that heat flow per unit body weight has no proper physical or physiological meaning (Kleiber, 1970), but since found such a physiological meaning: in work with tracers turnover rates are measured as quotients of transfer rates/pool content. For similometric animals pool contents are proportional to body weight. For such animals therefore the quotient metabolic rate/body weight may have a proper physiological meaning, namely the turnover rate of chemical energy in the animal body.The usefulness of the turnover rate is limited. For the calculation of the energy requirement of horizontal animal locomotion, for example, the calculation from the metabolic rate per animal is preferable to the calculation based on the metabolic rate per unit body weight.  相似文献   

13.
The amount of weight loss induced by exercise is often disappointing. A diet-induced negative energy balance triggers compensatory mechanisms, e.g., lower metabolic rate and increased appetite. However, knowledge about potential compensatory mechanisms triggered by increased aerobic exercise is limited. A randomized controlled trial was performed in healthy, sedentary, moderately overweight young men to examine the effects of increasing doses of aerobic exercise on body composition, accumulated energy balance, and the degree of compensation. Eighteen participants were randomized to a continuous sedentary control group, 21 to a moderate-exercise (MOD; 300 kcal/day), and 22 to a high-exercise (HIGH; 600 kcal/day) group for 13 wk, corresponding to ~30 and 60 min of daily aerobic exercise, respectively. Body weight (MOD: -3.6 kg, P < 0.001; HIGH: -2.7 kg, P = 0.01) and fat mass (MOD: -4.0 kg, P < 0.001 and HIGH: -3.8 kg, P < 0.001) decreased similarly in both exercise groups. Although the exercise-induced energy expenditure in HIGH was twice that of MOD, the resulting accumulated energy balance, calculated from changes in body composition, was not different (MOD: -39.6 Mcal, HIGH: -34.3 Mcal, not significant). Energy balance was 83% more negative than expected in MOD, while it was 20% less negative than expected in HIGH. No statistically significant changes were found in energy intake or nonexercise physical activity that could explain the different compensatory responses associated with 30 vs. 60 min of daily aerobic exercise. In conclusion, a similar body fat loss was obtained regardless of exercise dose. A moderate dose of exercise induced a markedly greater than expected negative energy balance, while a higher dose induced a small but quantifiable degree of compensation.  相似文献   

14.
Like many desert animals, the spinifex hopping mouse, Notomys alexis, can maintain water balance without drinking water. The role of the kidney in producing a small volume of highly concentrated urine has been well-documented, but little is known about the physiological mechanisms underpinning the metabolic production of water to offset obligatory water loss. In Notomys, we found that water deprivation (WD) induced a sustained high food intake that exceeded the pre-deprivation level, which was driven by parallel changes in plasma leptin and ghrelin and the expression of orexigenic and anorectic neuropeptide genes in the hypothalamus; these changed in a direction that would stimulate appetite. As the period of WD was prolonged, body fat disappeared but body mass increased gradually, which was attributed to hepatic glycogen storage. Switching metabolic strategy from lipids to carbohydrates would enhance metabolic water production per oxygen molecule, thus providing a mechanism to minimize respiratory water loss. The changes observed in appetite control and metabolic strategy in Notomys were absent or less prominent in laboratory mice. This study reveals novel mechanisms for appetite regulation and energy metabolism that could be essential for desert rodents to survive in xeric environments.  相似文献   

15.
白头鹎的代谢率与器官重量在季节驯化中的可塑性变化   总被引:5,自引:3,他引:5  
动物能量代谢的生理生态特征与物种的分布和丰富度密切相关,基础代谢率(BMR)是恒温动物维持正常生理机能的最小产热速率,是动物在清醒时维持身体各项基本功能所需的最小能量值,是内温动物能量预算的重要组成部分.本研究测定了白头鹎(Pycnonotus sinensis)的BMR、内部器官(肝、心、肌胃、小肠、肾和整体消化道)和肌肉的重量,分析了白头鹎内部器官和肌肉重量的季节性变化及与BMR的关系.方差分析表明,白头鹎的BMR存在明显的季节性变化,冬季较高,夏季最低.其内部器官及肌肉重量的变化同样有明显的季节性.相关分析表明,白头鹎的BMR与肝、心、消化道等内部器官和肌肉重量存在明显的相关性.  相似文献   

16.
The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the “Autophagy Paradox”. We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm “The Autophagic Tumor Stroma Model of Cancer Cell Metabolism” or “Battery-Operated Tumor Growth”. In this sense, autophagy in the tumor stroma serves as a “battery” to fuel tumor growth, progression, and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients—both effectively “starving” cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy, by the up-regulation of natural endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy, by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression, and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a “lethal” aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy, and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia.  相似文献   

17.
The energetic cost of maintaining lateral balance during human running   总被引:1,自引:0,他引:1  
To quantify the energetic cost of maintaining lateral balance during human running, we provided external lateral stabilization (LS) while running with and without arm swing and measured changes in energetic cost and step width variability (indicator of lateral balance). We hypothesized that external LS would reduce energetic cost and step width variability of running (3.0 m/s), both with and without arm swing. We further hypothesized that the reduction in energetic cost and step width variability would be greater when running without arm swing compared with running with arm swing. We controlled for step width by having subjects run along a single line (zero target step width), which eliminated any interaction effects of step width and arm swing. We implemented a repeated-measures ANOVA with two within-subjects fixed factors (external LS and arm swing) to evaluate main and interaction effects. When provided with external LS (main effect), subjects reduced net metabolic power by 2.0% (P = 0.032) and step width variability by 12.3% (P = 0.005). Eliminating arm swing (main effect) increased net metabolic power by 7.6% (P < 0.001) but did not change step width variability (P = 0.975). We did not detect a significant interaction effect between external LS and arm swing. Thus, when comparing conditions of running with or without arm swing, external LS resulted in a similar reduction in net metabolic power and step width variability. We infer that the 2% reduction in the net energetic cost of running with external LS reflects the energetic cost of maintaining lateral balance. Furthermore, while eliminating arm swing increased the energetic cost of running overall, arm swing does not appear to assist with lateral balance. Our data suggest that humans use step width adjustments as the primary mechanism to maintain lateral balance during running.  相似文献   

18.
A single injection of ACTH stimulated metabolic rate in the rat, and this effect was enhanced in hyperphagic cafeteria-fed rats. Chronic treatment with ACTH significantly reduced body weight, energy gain and energetic efficiency in stock-fed rats. Thermogenic responses to noradrenaline and a single meal, and purine nucleotide (GDP) binding to brown adipose tissue (BAT) mitochondria were also increased. Cafeteria feeding induced hyperphagia, increases in metabolic rate, acute thermogenic responses and BAT activity, and depressed energetic efficiency. ACTH had no additional effects on energy balance, thermogenic responses or brown fat in cafeteria-fed rats. These data indicate that stimulation of thermogenesis and BAT activity by ACTH resembles that induced by hyperphagia, and this effect may be partly responsible for the changes in energy balance after adrenalectomy seen in previous studies. However, acute and chronic responses to ACTH depend upon the nutritional status of the animal.  相似文献   

19.
Obligatory thermogenesis is a necessary accompaniment of all metabolic processes involved in maintenance of the body in the living state, and occurs in all organs. It includes energy expenditure involved in ingesting, digesting, and processing food (thermic effect of food (TEF]. At certain life stages extra energy expenditure for growth, pregnancy, or lactation would also be obligatory. Facultative thermogenesis is superimposed on obligatory thermogenesis and can be rapidly switched on and rapidly suppressed by the nervous system. Facultative thermogenesis is important in both thermal balance, in which control of thermoregulatory thermogenesis (shivering in muscle, nonshivering in brown adipose tissue (BAT] balances neural control of heat loss mechanisms, and in energy balance, in which control of facultative thermogenesis (exercise-induced in muscle, diet-induced thermogenesis (DIT) in BAT) balances control of energy intake. Thermal balance (i.e., body temperature) is much more stringently controlled than energy balance (i.e., body energy stores). Reduced energy expenditure for thermogenesis is important in two types of obesity in laboratory animals. In the first type, deficient DIT in BAT is a prominent feature of altered energy balance. It may or may not be associated with hyperphagia. In a second type, reduced cold-induced thermogenesis in BAT as well as in other organs is a prominent feature of altered thermal balance. This in turn results in altered energy balance and obesity, exacerbated in some examples by hyperphagia. In some of the hyperphagic obese animals it is likely that the exaggerated obligatory thermic effect of food so alters thermal balance that BAT thermogenesis is suppressed. In all obese animals, deficient hypothalamic control of facultative thermogenesis and (or) food intake is implicated.  相似文献   

20.
The effect of glutamine replacement by glutamate and the balance between glutamate and glucose metabolism on the redistribution of t-PA-producing recombinant CHO cells metabolism is studied in a series of glucose shift down and shift up experiments in continuous culture. These experiments reveal the existence of multiple steady states, and experimental data are used to perform metabolic flux analysis to gain a better insight into cellular metabolism and its redistribution. Regulation of glucose feed rate promotes a higher efficiency of glucose and nitrogen source utilization, with lower production of metabolic byproducts, but this reduces t-PA specific production rate. This reduction under glucose limitation can be attributed to the fact that the cells are forced to efficiently utilize the carbon and energy source for growth, impairing the production of dispensable metabolites. It is, therefore, the combination of growth rate and carbon and energy source availability that determines the level of t-PA production in continuous culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号