首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
BACKGROUND: Interleukin (IL)‐12 is a cytokine that can exert regulatory effects on T and NK cells. This study was designed to identify potential developmental and reproductive hazards associated with IL‐12p40 knockout in mice. METHODS: In the combined fertility and teratology study, female F0 C57/BL6 wild‐type control mice and female F0 C57/BL6 IL‐12p40 homozgyous knockout mice were assessed for estrous cyclicity, sperm, and mating parameters. Pregnant females were euthanized on gestation day (GD) 18 and their fetuses were assessed for external, visceral, and skeletal development. In the peri and postnatal development study, the F1 wild‐type control and IL‐12p40 knockout mice were assessed for developmental landmarks, sexual development, passive avoidance, motor activity, and morris water maze. RESULTS: The IL‐12p40 knockout male mice exhibited decreased testis weights when compared to the wild‐type control group; however, this finding was not considered adverse, as it had no apparent functional effects on mating, fertility, and pregnancy rates or sperm motility. The IL‐12p40 knockout group exhibited effects on estrous cycle length, passive avoidance, morris water maze, and motor activity when compared to the wild‐type control group. However, since these findings were small in magnitude, transient and/or had no apparent effects on subsequent growth and development, they were not considered adverse. CONCLUSIONS: These results demonstrate that although IL‐12p40 homozygous knockout in mice exhibited effects on developmental and reproductive parameters, these effects were relatively minor and were not considered adverse. Birth Defects Res (Part B) 92:102–110, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
    
2,2-Bis(4-hydroxyphenyl)propane (bisphenol A; BPA) is an environmental endocrine-disrupting chemical. It mimics the effects of estrogen at multiple levels by activating estrogen receptors (ERs); however, BPA also affects the proliferation of human breast cancer cells independent of ERs. Although BPA inhibits progesterone (P4) signaling, the toxicological significance of its effects remain unknown. Tripartite motif-containing 22 (TRIM22) has been identified as a P4-responsive and apoptosis-related gene. Nevertheless, it has not yet been established whether exogenous chemicals change TRIM22 gene levels. Therefore, the present study investigated the effects of BPA on P4 signaling and TRIM22 and TP53 expression in human breast carcinoma MCF-7 cells. In MCF-7 cells incubated with various concentrations of P4, TRIM22 messenger RNA (mRNA) levels increased in a dose-dependent manner. P4 induced apoptosis and decreased viability in MCF-7 cells. The knockdown of TRIM22 abolished P4-induced decreases in cell viability and P4-induced apoptosis. P4 increased TP53 mRNA expression and p53 knockdown decrease the basal level of TRIM22 and P4 increased TRIM22 mRNA expression independent of p53 expression. BPA attenuated P4-induced increases in the ratio of cell apoptosis in a concentration-dependent manner, and the P4-induced decreases in cell viability was abolished in the presence of 100 nM and higher BPA concentrations. Furthermore, BPA inhibited P4-induced TRIM22 and TP53 expression. In conclusion, BPA inhibited P4-induced apoptosis in MCF-7 cells via the inhibition of P4 receptor transactivation. TRIM22 gene has potential as a biomarker for investigating the disruption of P4 signaling by chemicals.  相似文献   

3.
The present study tests the hypothesis that hypoxia alters the high-affinity kainate receptors in fetal guinea pig brain. Experiments were conducted in normoxic and hypoxic guinea pig fetus at preterm (45 days of gestation) and term (60 days of gestation). Hypoxia in the guinea pig fetus was induced by exposure to maternal hypoxia (FiO2=7%) for 60 min. Brain tissue hypoxia in the fetus was documented biochemically by decreased levels of ATP and phosphorreatine. [3H]-Kainate binding characteristics (Bmax=number of receptors, Kd=dissociation constant) were used as indices of kainate receptor modification. P2 membrane fractions were prepared from the cortex of normoxic and hypoxic fetuses and were washed six times prior to performing the binding assays. [3H]kainate binding was performed at 0°C for 30 min in a 500 l medium containing 50 mM Tris-HCl buffer, 0.1 mM EDTA (pH 7.4), 300 g protein and varying concentrations of radiolabelled kainate ranging from 1 to 200 nM. Non-specific binding was determined in the presence of 1.0 mM glutamate. During brain development from 45 to 60 days gestation, Bmax value increased from 330±16 to 417±10 fmoles/mg protein; however, the Kd was unchanged (8.2±0.4 vs 8.8±0.5 nM, respectively). During hypoxia at 60 days, the Kd value significantly increased as compared to normoxic control (15.5±0.7 vs 8.8±0.5 nM, respectively), whereas the Bmax was not affected (435±12 vs 417±10 fmol/mg protein, respectively). At 45 days, hypoxia also increased the Kd (11.9±0.6 vs 8.2±0.4 nM) without affecting the Bmax (290±15 vs 330±16 fmol/mg protein, respectively). The results show that the number of kainate receptors increase during gestation without change in affinity and demonstrate that hypoxia modifies the high-affinity kainate receptor sites at both ages; however the effect is much stronger at 60 days (term). The decreased affinity of the site could decrease the kainate receptor-mediated fast kinetics of desensitization and provide a longer period for increased Na+-influx, leading to increased accumulation of intracellular Ca2+ by reversal of the Na+–Ca2+ exchange mechanism. In addition, Kd values for kainate-type glutamate receptor sites are 30–40 fold lower (i.e. higher affinity) than those for NMDA-displaceable glutamate sites. The higher affinity suggests that the activation of the kainate-type glutamate receptor during hypoxia could precede initiation of NMDA receptormediated excitotoxic mechanisms. We propose that hypoxia-induced modification of the high affinity kainate receptor in the fetus is a potential mechanism of neuroexcitotoxicity.  相似文献   

4.
We have previously reported that exposure of monkey embryos to 13-cis-retinoic acid (cRA) results in thymic defects. In this study, we analyzed lymphocyte and antigen-presenting cell populations at gestational days (GDs) 80-100 in the thymus, spleen, mesenteric lymph nodes, and gut-associated lymphoid tissue following a teratogenic dosing regimen of cRA (2.5 and 5 mg/kg) at GD14-27. Tissue sections were immunostained for T-cells (anti-CD3), B-cells (anti-CD20), dendritic cells (p55), and major histocompatibility class II (anti-HLA-DR). Digital images of spleen sections were analyzed to obtain the relative area occupied by the cell subsets within the white pulp (WP). Compared with controls, the T-cell dependent compartment of the spleen WP in specimens with perturbed thymic development (aplasia and severe hypoplasia) showed a reduction in size and proportion of CD3(+) T cells. Our findings indicate that cRA-induced thymic defects result in disrupted development of the splenic T-cell dependent compartment.  相似文献   

5.
    
Larval behavioral patterns arise in a gradual fashion during late embryogenesis as the innervation of the somatic musculature and connectivity within the central nervous system develops. In this paper, we describe in a quantitative manner the maturation of behavioral patterns. Early movements are locally restricted \"twitches\" of the body wall, involving single segments or parts of segments. These twitches occur at a low frequency and have low amplitude, reflecting weak muscle contractions. Towards later stages twitches increase in frequency and amplitude and become integrated into coordinated movements of multiple segments. Most noticeable among these is the peristaltic wave of longitudinal segmental contractions by which the larva moves forward or backward. Besides becoming more complex as development proceeds, embryonic movements also acquire a pronounced rhythm. Thus, late embryonic movements occur in bursts, with phases of frequent movement separated by phases of no movement at all; early movements show no such periodicity. These data will serve as a baseline for future studies that address the function of embryonic lethal genes controlling neuronal connectivity and larval behavior. We have analyzed behavioral abnormalities in two embryonic lethal mutations with severe neural defects, tailless (tll), which lacks the protocerebrum, and glial cells missing (gcm), in which glial cells are absent. Our results reveal prominent alterations in embryonic motility for both of these mutations, indicating that the protocerebrum and glial cells play a crucial role in the neural mechanism controlling larval movement in Drosophila.  相似文献   

6.
Genes on the sex chromosomes are unique because of their sex-specific inheritance. One question is whether homologous gene pairs on the sex chromosomes, which have diverged in their sequence, have acquired different functions. We have analyzed the first homologous pair of genes (CHD1Z and CHD1W) discovered on the avian Z and W sex chromosomes of the zebra finch (Taeniopygia guttata) to examine whether functional differences may have evolved. Sequence analysis revealed that the two genes maintained a high degree of similarity especially within the C, H, and D domains, but outside of these regions larger differences were observed. Expression studies showed that CHD1W was unique to females and has the potential to produce a protein that CHD1Z does not. CHD1Z mRNA was expressed at a higher level in the male brain than in the female brain at various post-hatch ages. Reporter constructs containing the 5' flanking regions of each gene showed they had the ability to drive reporter expression in primary cell cultures. The 5' flanking region sequence of CHD1Z and CHD1W exhibited little homology, and differences in putative promoter elements were apparent. These differences between CHD1Z and CHD1W suggest that the two proteins may have diverged in their function.  相似文献   

7.
8.
9.
    
Among the most defining events of an individual's life, is the development of a human embryo into male or a female. The phenotypic sex of an individual depends on the type of gonad that develops in the embryo, a process which itself is determined by the genetic setting of the individual. The development of the gonads is different from any other organ, as they possess the potential to differentiate into two functionally distinct organs, testes, or ovaries. Sex development can be divided into two distinctive processes, “sex determination,” which is the commitment of the undifferentiated gonad into either a testis or an ovary, a process that is genetically programmed in a critically timed manner and “sex differentiation,” which takes place through hormones produced by the gonads, once the developmental sex determination decision has been made. Disruption of any of the genes involved in either the testicular or ovarian development pathway could lead to disorders of sex development. In this review, we provide an insight into the factors important for sex determination, their antagonistic actions and whenever possible, references on the “prismatic” clinical cases are given. Birth Defects Research (Part C) 108:365–379, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Gonadal development is described in detail for coho salmon ( Oncorhynchus kisutch ) between hatching and 1000 degree-days, post-hatch, to aid sex reversal research. Germ cell morphology and sequence, vascular and reproductive duct development, and gross characteristics of the gonads are presented. Sex differentiation occurs by 380 degree-days, post-hatch (800 degree-days, post-fertilization) and is direct to male and female. Oocytes proliferate rapidly after differentiation while the testes enter a period of quiescence. Fry immersed for short durations in oestradiol (200 μg −1) are also examined. Hormone immersion advanced sex differentiation by 70 degree-days. The immersions were applied early, at 20 and 90 degree-days, post-hatch, yet still altered the sex ratio and timing of differentiation. Definitive germ cells, which are abundant during this period, may be the type most receptive to steroid treatment.  相似文献   

11.
Sex differences in neuron dendroarchitectonics of the amygdala posterior cortical nucleus of adult rats were described for the first time using the Golgi method. Long-axon sparse-branched neurons in male rats possessed a larger number of primary dendrites, while female rats had long-axon dense-branched neurons with longer dendrites. Injection of testosterone propionate at 1250 µg to females on day 5 after birth resulted in a greater number of primary dendrites of long-axon sparse branched neurons in adults, as compared to that in the control. Dendrites of long-axon sparse-branched neurons became much longer, thus enlarging the dendrite area.Translated from Ontogenez, Vol. 36, No. 1, 2005, pp. 64–67.Original Russian Text Copyright © 2005 by Akhmadeev, Kalimullina.  相似文献   

12.
Carbaryl is a broad-spectrum insecticide used to control insect pests. In aquatic environments, it can disrupt the endocrine system and adversely affect the reproductive function of aquatic animals. This study investigated sublethal impacts of carbaryl on embryos and gonads of zebrafish Danio rerio in order to assess the pesticide's impact on its reproduction. Fertilised embryos were exposed to 1.7 mg l–1 carbaryl until hatching, while larvae aged 10 days post hatching were exposed to 0.1, 0.2, 0.4, 0.8 and 1.7 mg l–1 carbaryl concentrations until 50 days post hatching (dph). Treatments were applied in a static renewal system and all experiments involved water only and a solvent control. At the end of 50 dph, all surviving fish were sacrificed and processed for light microscopy. Results indicated a mean hatching success rate of 92.5% for control groups, while embryos exposed to carbaryl recorded an 81.0% success rate. Sex reversal was delayed in the experimental groups, with a sex ratio of 13 females to 0 males, but the control group recorded 6 females to 8 males. These results suggest that sublethal doses of carbaryl in the environment, similar to those used in the current study, may have an adverse effect on the reproductive success of zebrafish.  相似文献   

13.
Summary Experimental chick embryos were incubated at 37.5°C till day 7 and after day 10, and at 40.5°C on days 7–10; their optic lobes and cerebral hemispheres at day 10 and at hatching were compared with controls incubated at 37.5°C only. Cell numbers at day 10 were directly counted by a new method involving formalin fixation and cell disaggregation by gentle sonication. At hatching, body weights, organ weights and organ DNA (cell numbers) were the same in experimentals and in controls, for both optic lobes and cerebral hemispheres, though the protein contents were significantly higher in experimentals. However, at 10 days (end of neuron proliferation) the weights and the cell numbers in experimentals were significantly higher. Two possible explanations have been offered: 1. Elevated neuron population in experimental animals at day 10 is followed by their elevated death rate, or 2. The increment in neuron number is permanent but at hatching it is overshadowed by the population of other cells.An abstract of this work has been presented (Zamenhof, 1975)  相似文献   

14.
    
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
    
It is essential to know the timing and process of normal gonadal differentiation and development in the specific species being investigated in order to evaluate the effect of exposure to endocrine-disrupting chemicals on these processes. In the present study gonadal sex differentiation and development were investigated in embryos of a viviparous species of marine fish, the eelpout, Zoarces viviparus, during their intraovarian development (early September to January) using light and electron microscopy. In both sexes of the embryos at the time of hatching (September 20) the initially undifferentiated paired bilobed gonad contains primordial germ cells. In the female embryos, ovarian differentiation, initiated 14 days posthatch (dph), is characterized by the initial formation of the endoovarian cavity of the single ovary as well as by the presence of some early meiotic oocytes in a chromatin-nucleolus stage. By 30 dph, the endoovarian cavity has formed. By 44 dph and onward, the ovary and the oocytes grow in size and at 134 dph, just prior to birth, the majority of the oocytes are at the perinucleolar stage of primary growth and definitive follicles have formed. In the presumptive bilobed testis of the male embryos, the germ cells (spermatogonia), in contrast to the germ cells of the ovary, remain quiescent and do not enter meiosis during intraovarian development. However, other structural (somatic) changes, such as the initial formation of the sperm duct (30 dph), the presence of blood vessels in the stromal areas of the testis (30 dph), and the appearance of developing testicular lobules (102 dph), indicate testicular differentiation. Ultrastructually, the features of the primordial germ cells, oogonia, and spermatogonia are similar, including nuage, mitochondria, endoplasmic reticulum, and Golgi complexes.  相似文献   

16.
Specific features of neuron dendroarchitectonics in the amygdale dorsomedial nucleus were described using the Golgi method after the injection of testosterone propionate at 1250 g to females on the fifth day after birth.  相似文献   

17.
18.
The changes in neuron dendroarchitectonics in the posteromedial nucleus of the amygdala induced by administration of 1250 μg testosterone propionate on neonatal day 5 have been revealed in adult female Wistar rats for the first time.  相似文献   

19.
    
BACKGROUND: Polybrominated diphenyl ether (PBDE) toxicity in rodents can be associated with disruptions in endocrine signaling. We previously reported that the penta‐BDE mixture, DE‐71, disrupts thyroid hormones and vitamin A metabolism in rats during lactation, and that this disruption is amplified in animals fed diets marginal in vitamin A. The ability of the DE‐71 to disrupt vitamin A metabolism during the prenatal period has not been evaluated. While penta‐BDE mixtures are not strong teratogens in pregnant animals fed standard commercial laboratory diets, we hypothesized that they could be teratogenic under conditions of marginal vitamin A status. METHODS : rats were fed diets containing 0.4 retinyl equivalents (RE, marginal) or 4.0 RE (adequate) of vitamin A per gram of diet. Pregnant animals were exposed to DE‐71 (0, 6, 18, 60, or 120 mg/kg) from gestation days (GD) 6–11.5, or on GD 6–19.5. RESULTS : DE‐71 treatment resulted in dose‐responsive reductions in maternal thyroid hormone and markers of vitamin A metabolism, with the latter reduction amplified in marginal vitamin A dams. Fetuses from marginal vitamin A, DE‐71‐exposed dams exhibited a dose‐responsive increase in liver retinol binding protein levels. DE‐71 treatment did not result in gross malformations; however, consistent with our hypothesis, GD 20 fetal weights were lower, and skeletal ossification was less when DE‐71 exposure occurred concomitant with a marginal vitamin A status. For several endpoints, observable effects were evident at the lowest dose tested, consistent with a dose‐response trend. CONCLUSIONS : The results of this study support the concept that marginal vitamin A status enhances the disruptive effects of DE‐71 during prenatal development. Birth Defects Research (Part B) 86:48‐57, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
    
An investigation into the influence of temperature on the growth and reproductive status of the fathead minnow Pimephales promelas revealed that, while there was no clear effect of treatment on sex differentiation, ovarian tissue from female fish reared under the highest temperature regime contained large amounts of undefined tissue containing no germ cells. Furthermore, both male and female fish exhibited differences in length mass, condition and somatic indices, and in the expression of secondary sexual characteristics. The patterns observed are discussed in the context of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号