首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《The Journal of cell biology》1989,109(6):3085-3094
Microtubules in the dendrites of cultured hippocampal neurons are of nonuniform polarity orientation. About half of the microtubules have their plus ends oriented distal to the cell body, and the other half have their minus ends distal; in contrast, microtubules in the axon are of uniform polarity orientation, all having their plus ends distal (Baas, P.W., J.S. Deitch, M. M. Black, and G. A. Banker. 1988. Proc. Natl. Acad. Sci. USA. 85:8335-8339). Here we describe the developmental changes that give rise to the distinct microtubule patterns of axons and dendrites. Cultured hippocampal neurons initially extend several short processes, any one of which can apparently become the axon (Dotti, C. G., and G. A. Banker. 1987. Nature [Lond.]. 330:477-479). A few days after the axon has begun its rapid growth, the remaining processes differentiate into dendrites (Dotti, C. G., C. A. Sullivan, and G. A. Banker. 1988. J. Neurosci. 8:1454-1468). The polarity orientation of the microtubules in all of the initial processes is uniform, with plus ends distal to the cell body, even through most of these processes will become dendrites. This uniform microtubule polarity orientation is maintained in the axon at all stages of its growth. The polarity orientation of the microtubules in the other processes remains uniform until they begin to grow and acquire the morphological characteristics of dendrites. It is during this period that microtubules with minus ends distal to the cell body first appear in these processes. The proportion of minus end-distal microtubules gradually increases until, by 7 d in culture, about equal numbers of dendritic microtubules are oriented in each direction. Thus, the establishment of regional differences in microtubule polarity orientation occurs after the initial polarization of the neuron and is temporally correlated with the differentiation of the dendrites.  相似文献   

2.
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   

3.
We have studied the capture of microtubules by isolated metaphase chromosomes, using microtubules stabilized with taxol and marked with biotin tubulin to distinguish their plus and minus ends. The capture reaction is reversible at both the plus and minus ends. The on rate of capture is the same for both polarities but the dissociation rate from the kinetochore is seven times slower with microtubules captured at their plus ends than those captured at their minus ends. At steady state this disparity in off rates leads to the gradual replacement of microtubules captured at their minus ends with those captured at their plus ends. These results suggest that the kinetochore makes a lateral attachment near the end of the microtubule in the initial capture reaction and shows a structural specificity that may be important in proper bipolar attachment of the chromosome to the spindle.  相似文献   

4.
Axons and dendrites of neurons differ in the polarity orientation of their microtubules. Whereas the polarity orientation of microtubules in axons is uniform, with all plus ends distal, that in dendrites is nonuniform. The mechanisms responsible for establishment and maintenance of microtubule polarity orientation in neuronal processes remain unclear, however. We previously described a culture system in which dendrites of rat cortical neurons convert to axons. In the present study, we examined changes in microtubule polarity orientation in such dendrites. With the use of the hooking procedure and electron microscopy, we found that microtubule polarity orientation changed from nonuniform to uniform, with a plus end-distal arrangement, in dendrites that gave rise to axons during culture of neurons for 24 h. Microtubule polarity orientation remained nonuniform in dendrites that did not elongate. Axon regeneration at the dendritic tip thus triggered the disappearance of minus end-distal microtubules from dendrites. These minus end-distal microtubules also disappeared from dendrites during axon regeneration in the presence of inhibitors of actin polymerization, suggesting that actin-dependent transport of microtubules is not required for this process and implicating a previously unidentified mechanism in the establishment and maintenance of microtubule polarity orientation in neuronal processes.  相似文献   

5.
The structural polarity of cellular microtubules can be visualized in situ by lysing cells in special buffers containing tubulin. Under these conditions, the tubulin polymerizes to form curved sheets which attach to the walls of the endogenous microtubules. When such decorated microtubules are cut in cross section and viewed in the electron microscope, they appear to bear hooks curving clockwise or counter- clockwise. The direction of hook curvature is defined by the orientation of the decorated microtubule and thus serves as a probe for microtubule polarity. In this paper we describe a way to analyze the relative frequencies of hooks of different curvatures so as to measure the fidelity of the relation between hook curvature and microtubule polarity. The assumptions of the method are tested and found to be valid to a reasonable accuracy. The correlation between hook curvature and microtubule orientation is shown to be at least 0.98 for the spindles of PtK cells and Haemanthus endosperm at all stages of division and at all places in the spindle. The correlation is shown to be valid for each hook that forms, so the polarity of those microtubules that bear multiple hooks is specified with even better certainty than 0.98. This property of hook decoration is used to reinvestigate the possibility that some of the microtubules of the kinetochore fiber might be oriented with their plus ends distal to the kinetochore (opposite to the direction previously shown to predominate). Close analysis fails to identify such oppositely oriented microtubules. The scoring of tubules bearing multiple hooks also shows that individual interzone fibers at anaphase are constructed from clusters of antiparallel microtubules. The method for estimating the correlation between hook decoration and microtubule polarity is shown to be applicable to many structures and circumstances, but we find that the hook decoration assay for microtubule polarity is not uniformly accurate. We suggest that future studies using hook decorations should employ the method of data analysis presented here to assess the accuracy of the results obtained.  相似文献   

6.
Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to alpha-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.  相似文献   

7.
Background information. Directional cell migration is a fundamental feature of embryonic development, the inflammatory response and the metastatic spread of cancer. Migrating cells have a polarized morphology with an asymmetric distribution of signalling molecules and of the actin and microtubule cytoskeletons. The dynamic reorganization of the actin cytoskeleton provides the major driving force for migration in all mammalian cell types, but microtubules also play an important role in many cells, most notably neuronal precursors. Results. We previously showed, using primary fibroblasts and astrocytes in in vitro scratch‐induced migration assays, that the accumulation of APC (adenomatous polyposis coli; the APC tumour suppressor protein) at microtubule plus‐ends promotes their association with the plasma membrane at the leading edge. This is required for polarization of the microtubule cytoskeleton during directional migration. Here, we have examined the organization of microtubules in the soma of migrating neurons and fibroblasts. Conclusions. We find that APC, through a direct interaction with the NPC (nuclear pore complex) protein Nup153 (nucleoporin 153), promotes the association of microtubules with the nuclear membrane.  相似文献   

8.
In cells of the teleost retinal pigment epithelium (RPE), melanin granules disperse into the RPE cell's long apical projections in response to light onset, and aggregate toward the base of the RPE cell in response to dark onset. The RPE cells possess numerous microtubules, which in the apical projections are aligned longitudinally. Nocodazole studies have shown that pigment granule aggregation is microtubule-dependent (Troutt, L. L., and B. Burnside, 1988b Exp. Eye Res. In press.). To investigate further the mechanism of microtubule participation in RPE pigment granule aggregation, we have used the tubulin hook method to assess the polarity of microtubules in the apical projections of teleost RPE cells. We report here that virtually all microtubules in the RPE apical projections are uniformly oriented with plus ends toward the cell body and minus ends toward the projection tips. This orientation is opposite that found for microtubules of dermal melanophores, neurons, and most other cell types.  相似文献   

9.
Summary The microtubules in different parts of the neuron and synaptosomes were examined with respect to their stability, structure and orientation. On the basis of distribution, different labilities and differences in protofilament substructure seen by tannic acid staining, we have classified microtubules into eight major categories. Functional involvements in vesicle translocation, cytoskeletal support and the regulation of assembly/disassembly are considered.Dr. L.E. Westrum is an affiliate of the CDMRC at the University of Washington and a recipient of a Wellcome Research Travel Grant from the Burroughs-Wellcome Fund. The research was also supported in part by NIH Grants NS 09678, NS 04053 (NINCDS) and DE 04942 (NIDR), DHHS  相似文献   

10.
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.  相似文献   

11.
The functional polarity of nerve cells depends on the outgrowth of both axons and dendrites. These processes, which were distinguished by morphological and physiological criteria, have been shown in recent years to differ in molecular composition, including their cytoskeleton. The asymmetric distribution of cytoskeletal elements and, particularly, the segregation of microtubule-associated proteins by their differential transport, may play an important role in the assembly of distinct microtubules in the two neuronal domains. An additional mechanism to achieve this subcellular localization is the transport of specific mRNAs to allow the local synthesis of specific proteins close to their functional site. This may endow the cell with a rapid mechanism for the regulation of synthesis under special conditions, which may be important during neuronal development and plasticity.  相似文献   

12.
13.
BACKGROUND INFORMATION: Directional cell migration is a fundamental feature of embryonic development, the inflammatory response and the metastatic spread of cancer. Migrating cells have a polarized morphology with an asymmetric distribution of signalling molecules and of the actin and microtubule cytoskeletons. The dynamic reorganization of the actin cytoskeleton provides the major driving force for migration in all mammalian cell types, but microtubules also play an important role in many cells, most notably neuronal precursors. RESULTS: We previously showed, using primary fibroblasts and astrocytes in in vitro scratch-induced migration assays, that the accumulation of APC (adenomatous polyposis coli; the APC tumour suppressor protein) at microtubule plus-ends promotes their association with the plasma membrane at the leading edge. This is required for polarization of the microtubule cytoskeleton during directional migration. Here, we have examined the organization of microtubules in the soma of migrating neurons and fibroblasts. CONCLUSIONS: We find that APC, through a direct interaction with the NPC (nuclear pore complex) protein Nup153 (nucleoporin 153), promotes the association of microtubules with the nuclear membrane.  相似文献   

14.
Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis.  相似文献   

15.
Henmi Y  Tanabe K  Takei K 《PloS one》2011,6(12):e28603
A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.  相似文献   

16.
The main aim of this paper is to present a simple probabilistic model for the early stage of neuron growth: the specification on an axon out of several initially similar neurites. The model is a Markov process with competition between the growing neurites, wherein longer objects have more chances to grow, and parameter alpha determines the intensity of the competition. For alpha > 1 the model provides results which are qualitatively similar to the experimental ones, i.e. selection of one rapidly elongating axon out of several neurites while other less successful neurites stop growing at some random time. Rigorous mathematical proofs are given.  相似文献   

17.
Control of spindle polarity and orientation in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Control of mitotic spindle orientation represents a major strategy for the generation of cell diversity during development of metazoans. Studies in the budding yeast Saccharomyces cerevisiae have contributed towards our present understanding of the general principles underlying the regulation of spindle positioning in an asymmetrically dividing cell. In S. cerevisiae, the mitotic spindle must orient along the cell polarity axis, defined by the site of bud emergence, to ensure correct nuclear division between the mother and daughter cells. Establishment of spindle polarity dictates this process and relies on the concerted control of spindle pole function and a precise program of cues originating from the cell cortex that directs cytoplasmic microtubule attachments during spindle morphogenesis. These cues cross talk with the machinery responsible for bud-site selection, indicating that orientation of the spindle in yeast cells is mechanistically coupled to the definition of a polarity axis and the division plane. Here, we propose a model integrating the inherently asymmetric properties of the spindle pathway with the program of positional information contributing towards orienting the spindle in budding yeast. Because the basic machinery orienting the spindle in higher-eukaryotic cells appears to be conserved, it might be expected that similar principles govern centrosome asymmetry in the course of metazoan development.  相似文献   

18.
Summary Immunofluorescence and TEM studies of meiosis in two mosses (Bryophyta) provide evidence that the prophasic tetrahedral system of microtubules contributes directly to the metaphase I spindle. Intense staining of tubulin, conspicuously absent around the nuclear envelope, is first seen associated with plastids. By mid-prophase, microtubules radiate from the plastids to the nuclear envelope and become organized into six bands that interconnect the four plastids, forming a tetrahedral cytoskeleton surrounding the nucleus. During transition of prophase to metaphase, the four poles of the tetrahedral microtubule system converge in pairs toward opposite cleavage furrows. Opposite furrows occupy mutually perpendicular planes and the pair of microtubule focal points straddling one furrow lies at right angles to the pair straddling the opposite furrow. Additional microtubules terminate in numerous small clusters in the concave polar regions arching over the cleavage furrows. By early anaphase, the microtubule focal points lie very close to the division axis. We conclude that microtubules recruited from the prophasic quadripolar system are incorporated into the mature metaphase I spindle and the two principal focal points at each pole are those derived from poles of the prophasic quadripolar system.  相似文献   

19.
Summary First and second division spindles and the three cell plates of moss meiosis are oriented in accordance with polarity established during meiotic prophase. Plastids are located at the second division poles and cytoplasmic infurrowing marks the planes along which the cytoplasm will cleave into four spores. Anaphase I spindles that terminate in two focal points of microtubules straddling opposite cleavage furrows reflect the unusual tetrahedral origin of the functionally bipolar spindle. The organelles (except for the plastids which remain in the four cytoplasmic lobes) are polarized in the first division equatorial region at the time of phragmoplast microtubule assembly and remain in a distinct band after microtubule disassembly. Prophasic spindles appear to be directly transformed into metaphase II spindles in the predetermined axes between mutually perpendicular pairs of plastids. Cell plates form by vesicle coalescence in the equatorial regions of the two sets of second division phragmoplasts at approximately the same time as a cell plate belatedly forms in the organelle band. The cytoplasmic markers (plastid migration, cytoplasmic lobing and infurrowing) that predict poles and cleavage planes in free cells lacking a preprophase band strongly strengthens the concept that division sites are capable of preserving preprogrammed signals that can be triggered later in the process of cell division.  相似文献   

20.
《The Journal of cell biology》1993,120(6):1427-1437
It is well established that axonal microtubules (MTs) are uniformly oriented with their plus ends distal to the neuronal cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-665). However, the mechanisms by which these MTs achieve their uniform polarity orientation are unknown. Current models for axon growth differ with regard to the contributions of MT assembly and transport to the organization and elaboration of the axonal MT array. Do the transport properties or assembly properties of axonal MTs determine their polarity orientation? To distinguish between these possibilities, we wished to study the initiation and outgrowth of axons under conditions that would arrest MT assembly while maintaining substantial levels of preexisting polymer in the cell body that could still be transported into the axon. We found that we could accomplish this by culturing rat sympathetic neurons in the presence of nanomolar levels of vinblastine. In concentrations of the drug up to and including 100 nM, the neurons actively extend axons. The vinblastine- axons are shorter than control axons, but clearly contain MTs. To quantify the effects of the drug on MT mass, we compared the levels of polymer throughout the cell bodies and axons of neurons cultured overnight in the presence of 0, 16, and 50 nM vinblastine with the levels of MT polymer in freshly plated neurons before axon outgrowth. Without drug, the total levels of polymer increase by roughly twofold. At 16 nM vinblastine, the levels of polymer are roughly equal to the levels in freshly plated neurons, while at 50 nM, the levels of polymer are reduced by about half this amount. Thus, 16 nM vinblastine acts as a "kinetic stabilizer" of MTs, while 50 nM results in some net MT disassembly. At both drug concentrations, there is a progressive increase in the levels of MT polymer in the axons as they grow, and a corresponding depletion of polymer from the cell body. These results indicate that highly efficient mechanisms exist in the neuron to transport preassembled MTs from the cell body into the axon. These mechanisms are active even at the expense of the cell body, and even under conditions that promote some MT disassembly in the neuron. MT polarity analyses indicate that the MTs within the vinblastine-axons, like those in control axons, are uniformly plus-end-distal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号