首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teneurins are a novel family of transmembrane proteins expressed during pattern formation and morphogenesis. Originally discovered as ten-m and ten-a in Drosophila, four vertebrate teneurins as well as a Caenorhabditis elegans homologue were identified. The conserved domain architecture of teneurins includes an intracellular domain containing polyproline motifs. The long extracellular domain consists of eight EGF-like repeats, a region of conserved cysteines and unique YD-repeats. Vertebrate teneurins are most prominently expressed in the developing central nervous system, but are also expressed in developing limbs. In C. elegans, RNAi experiments and studies of mutants reveal that teneurins are required during fundamental developmental processes like cell migration and axon pathfinding. Cell culture experiments suggest that the intracellular domain of teneurins translocates to the nucleus following release from the membrane by proteolytic processing. Interestingly, the human teneurin-1 gene is located on the X-chromosome in a region where several families with X-linked mental retardation are mapped.  相似文献   

2.
We have characterized chicken teneurin-1 and teneurin-2, two homologues of the Drosophila pair-rule gene product Ten-m and Drosophila Ten-a. The high degree of conservation between the vertebrate and invertebrate proteins suggests that these belong to a novel family. We propose to name the vertebrate members of this family teneurins, because of their predominant expression in the nervous system. The expression of teneurin-1 and -2 was investigated by in situ hybridization. We show that teneurin-1 and -2 are expressed by distinct populations of neurons during the time of axonal growth. The most prominent site of expression of chicken teneurins is the developing visual system. Recombinant teneurin-2 was expressed to assay its molecular and functional properties. We show that it is a type II transmembrane protein, which can be released from the cell surface by proteolytic cleavage at a furin site. The expression of teneurin-2 in neuronal cells led to a significant increase in the number of filopodia and to the formation of enlarged growth cones. The expression pattern of teneurins in the developing nervous system and the ability of teneurin-2 to reorganize the cellular morphology indicate that these proteins may have an important function in the formation of neuronal connections.  相似文献   

3.
4.
Teneurins are type II transmembrane proteins expressed during pattern formation and neurogenesis with an intracellular domain that can be transported to the nucleus and an extracellular domain that can be shed into the extracellular milieu. In Drosophila melanogaster, Caenorhabditis elegans, and mouse the knockdown or knockout of teneurin expression can lead to abnormal patterning, defasciculation, and abnormal pathfinding of neurites, and the disruption of basement membranes. Here, we have identified and analyzed teneurins from a broad range of metazoan genomes for nuclear localization sequences, protein interaction domains, and furin cleavage sites and have cloned and sequenced the intracellular domains of human and avian teneurins to analyze alternative splicing. The basic organization of teneurins is highly conserved in Bilateria: all teneurins have epidermal growth factor (EGF) repeats, a cysteine-rich domain, and a large region identical in organization to the carboxy-half of prokaryotic YD-repeat proteins. Teneurins were not found in the genomes of sponges, cnidarians, or placozoa, but the choanoflagellate Monosiga brevicollis has a gene encoding a predicted teneurin with a transmembrane domain, EGF repeats, a cysteine-rich domain, and a region homologous to YD-repeat proteins. Further examination revealed that most of the extracellular domain of the M. brevicollis teneurin is encoded on a single huge 6,829-bp exon and that the cysteine-rich domain is similar to sequences found in an enzyme expressed by the diatom Phaeodactylum tricornutum. This leads us to suggest that teneurins are complex hybrid fusion proteins that evolved in a choanoflagellate via horizontal gene transfer from both a prokaryotic gene and a diatom or algal gene, perhaps to improve the capacity of the choanoflagellate to bind to its prokaryotic prey. As choanoflagellates are considered to be the closest living relatives of animals, the expression of a primitive teneurin by an ancestral choanoflagellate may have facilitated the evolution of multicellularity and complex histogenesis in metazoa.  相似文献   

5.
6.
Teneurins are a novel family of transmembrane proteins conserved between invertebrates and vertebrates. There are two members in Drosophila, one in C. elegans and four members in mouse. Here, we describe the analysis of the genomic structure of the human teneurin-1 gene. The entire human teneurin-1 (TEN1) gene is contained in eight PAC clones representing part of the chromosomal locus Xq25. Interestingly, many X-linked mental retardation syndromes (XLMR) and non-specific mental retardation (MRX) are mapped to this region. The location of the human TEN1 together with the neuronal expression makes TEN1 a candidate gene for XLMR and MRX. We also identified large parts of the human teneurin-2 sequence on chromosome 5 and sections of human teneurin-4 at chromosomal position 11q14. Database searches resulted in the identification of ESTs encoding parts of all four human members of the teneurin family. Analysis of the genomic organization of the Drosophila ten-a gene revealed the presence of exons encoding a long form of ten-a, which can be aligned with all other teneurins known. Sequence comparison and phylogenetic trees of teneurins show that insects and vertebrates diverged before the teneurin ancestor was duplicated independently in the two phyla. This is supported by the presence of conserved intron positions between teneurin genes of man, Drosophila and C. elegans. It is therefore not possible to class any of the vertebrate teneurins with either Drosophila Ten-a or Ten-m. The C-terminal part of all teneurins harbours 26 repetitive sequence motifs termed YD-repeats. YD-repeats are most similar to the repeats encoded by the core of the rearrangement hot spot (rhs) elements of Escherichia coli. This makes the teneurin ancestor a candidate gene for the source of the rhs core acquired by horizontal gene transfer.  相似文献   

7.
8.
9.
Kringle domain, a triple-disulfide-linked domain, is conserved in diverse proteins which play important roles in various biological processes. We cloned Kremen, a novel member of kringle-containing proteins, using a newly developed unique strategy, 'Kringle-SAGE (serial analysis of gene expression)', which enables comprehensive analysis of kringle-containing proteins. Kremen is likely to be a type-I transmembrane protein composed of 473 amino acid residues. Kremen has a kringle domain, a WSC domain, and CUB domains in the extracellular region, while the intracellular region has no conserved motif involved in signal transduction. In the mouse embryo, the Kremen mRNA level, which was increased during embryonic development, was localized in the apical ectodermal ridge of limb buds, myotome, and sensory organs (e.g. optic vesicle, otic vesicle, nasal pit). In the adult mouse, Kremen mRNA was expressed in a variety of tissues with a relatively strong expression in the lung, heart, and skeletal muscle. Kremen mRNA expression in C2C12 and NIE-115 cells increased during respective differentiation into muscular and neural cells. These results suggest a potential role for Kremen in the regulation of cellular responses upon extracellular stimulus or cell-cell interaction in neuronal and/or muscle cells. Kringle-SAGE is expected to facilitate further elucidation of structure and functions of kringle proteins.  相似文献   

10.
11.
12.
Testicular size is directly proportional to fertility potential and is dependent on the integration of developmental proteins, trophic factors, and sex steroids. The teneurins are transmembrane glycoproteins that function as signaling and cell adhesion molecules in the establishment and maintenance of the somatic gonad, gametogenesis, and basement membrane. Moreover, teneurins are thought to function redundantly to the extracellular matrix protein, dystroglycan. Encoded on the last exon of the teneurin genes is a family of bioactive peptides termed the teneurin C-terminal-associated peptides (TCAPs). One of these peptides, TCAP-1, functionally interacts with β-dystroglycan to act as a neuromodulatory peptide with trophic characteristics independent from the teneurins. However, little is known about the localization and relationship between the teneurin-TCAP-1 system and the dystroglycans in the gonad. In the adult mouse testis, immunoreactive TCAP-1 was localized to spermatogonia and spermatocytes and co-localized with β-dystroglycan. However, teneurin-1 was localized to the peritubular myoid cell layer of seminiferous tubules and tubules within the epididymis, and co-localized with α-dystroglycan and α-smooth muscle actin. TCAP-1-binding sites were identified in the germ cell layers and adluminal compartment of the seminiferous tubules, and epithelial cells of the epididymis. In vivo, TCAP-1 administration to adult mice for 9 days increased testicular size, seminiferous and epididymal tubule short-diameter and elevated testosterone levels. TCAP-1-treated mice also showed increased TCAP-1 immunoreactivity in the caput and corpa epididymis. Our data provide novel evidence of TCAP-1 localization in the testes that is distinct from teneurin-1, but is integrated through an association with the dystroglycan complex.  相似文献   

13.
Back signaling by the Nrg-1 intracellular domain   总被引:4,自引:0,他引:4  
Transmembrane isoforms of neuregulin-1 (Nrg-1), ligands for erbB receptors, include an extracellular domain with an EGF-like sequence and a highly conserved intracellular domain (ICD) of unknown function. In this paper, we demonstrate that transmembrane isoforms of Nrg-1 are bidirectional signaling molecules in neurons. The stimuli for Nrg-1 back signaling include binding of erbB receptor dimers to the extracellular domain of Nrg-1 and neuronal depolarization. These stimuli elicit proteolytic release and translocation of the ICD of Nrg-1 to the nucleus. Once in the nucleus, the Nrg-1 ICD represses expression of several regulators of apoptosis, resulting in decreased neuronal cell death in vitro. Thus, regulated proteolytic processing of Nrg-1 results in retrograde signaling that appears to mediate contact and activity-dependent survival of Nrg-1-expressing neurons.  相似文献   

14.
The neuronal cell adhesion molecule Bravo/Nr-CAM is a cell surface protein of the immunoglobulin (Ig) superfamily and is closely related to the L1/NgCAM and neurofascin molecules, all of which contain six immunoglobulin domains, five fibronectin repeats, a transmembrane region, and an intracellular domain. Chicken Bravo/Nr-CAM has been shown to interact with other cell surface molecules of the Ig superfamily and has been implicated in specific pathfinding roles of axonal growth cones in the developing nervous system. We now report the characterization of cDNA clones encoding the human Bravo/Nr-CAM protein, which, like its chicken homolog, is composed of six V-like Ig domains and five fibronectin type III repeats. The human Bravo/Nr-CAM homolog also contains a transmembrane and intracellular domain, both of which are 100% conserved at the amino acid level compared to its chicken homolog. Overall, the human Bravo/Nr-CAM homolog is 82% identical to the chicken Bravo/Nr-CAM amino acid sequence. Independent cDNAs encoding four different isoforms were also identified, all of which contain alternatively spliced variants around the fifth fibronectin type III repeat, including one isoform that had been previously identified for chicken Bravo/Nr-CAM. Northern blot analysis reveals one mRNA species of approximately 7.0 kb in adult human brain tissue. Fluorescencein situhybridization maps the gene for human Bravo/Nr-CAM to human chromosome 7q31.1–q31.2. This chromosomal locus has been previously identified as containing a tumor suppressor candidate gene commonly deleted in certain human cancer tissues.  相似文献   

15.
The tumor suppressor RB regulates diverse cellular processes such as G1/S transition, cell differentiation, and cell survival. Indeed, Rb-knockout mice exhibit phenotypes including ectopic mitosis, defective differentiation, and extensive apoptosis in the neurons. Using differential display, a novel gene, Rig-1, was isolated based on its elevated expression in the hindbrain and spinal cord of Rb-knockout embryos. The longest open reading frame of Rig-1 encoded a polypeptide that consists of a putative extracellular segment with five immunoglobulin-like domains and three fibronectin III-like domains, a putative transmembrane domain, and a distinct intracellular segment. The Rig-1 sequence was 40% identical to the recently identified roundabout protein. Consistent with the predicted transmembrane nature of the protein, Rig-1 protein was present in the membranous fraction. Antisera raised against the putative extracellular and intracellular segments of Rig-1 reacted with an approximately 210-kDa protein in mouse embryonic CNS. Rig-1 mRNA was transiently expressed in the embryonic hindbrain and spinal cord. Elevated levels of Rig-1 mRNA and protein were found in Rb-/- embryos. Ectopic expression of a transmembrane form of Rig-1, but not the secreted form, promoted neuronal cell entrance to S phase and repressed the expression of a marker of differentiated neuron, Talpha1 tubulin. Thus Rig-1, a possible distant relative of roundabout, may mediate some of the pleiotropic roles of RB in the developing neurons.  相似文献   

16.
Axon pathfinding and synapse formation rely on precise spatiotemporal localization of guidance receptors. However, little is known about the neuron-specific intracellular trafficking mechanisms that underlie the sorting and activity of these receptors. Here we show that loss of the neuron-specific v-ATPase subunit a1 leads to progressive endosomal guidance receptor accumulations after neuronal differentiation. In the embryo and in adult photoreceptors, these accumulations occur after axon pathfinding and synapse formation is complete. In contrast, receptor missorting occurs sufficiently early in neurons of the adult central nervous system to cause connectivity defects. An increase of guidance receptors, but not of membrane proteins without signaling function, causes specific gain-of-function phenotypes. A point mutant that promotes sorting but prevents degradation reveals spatiotemporally specific guidance receptor turnover and accelerates developmental defects in photoreceptors and embryonic motor neurons. Our findings indicate that a neuron-specific endolysosomal degradation mechanism is part of the cell biological machinery that regulates guidance receptor turnover and signaling.  相似文献   

17.
Heterodimeric integrin receptors for extracellular matrix (ECM) play vital roles in bidirectional signaling during tissue development, organization, remodeling, and repair. The beta integrin subunit cytoplasmic domain is essential for transmission of many of these signals and overexpression of an unpaired beta tail in cultured cells inhibits endogenous integrins. Unlike vertebrates, which have at least nine beta subunit genes, the nematode Caenorhabditis elegans expresses only one beta subunit (betapat-3), and a null mutation in this gene causes embryonic lethality. To determine the functions of integrins during larval development and in adult tissues, we have taken a dominant negative approach by expression of an HA-betatail transgene composed of a hemagglutinin (HA) epitope tag extracellular domain connected to the betapat-3 transmembrane and cytoplasmic domains. Expression of this transgene in muscle and gonad, major sites of integrin expression, caused a variety of phenotypes dependent on the level of transgene expression. Abnormalities in body wall and sex muscles led to uncoordinated movement and egg-laying defects. Significant anomalies in migration and pathfinding were caused by tissue-specific expression of HA-betatail in the distal tip cells (DTC), the cells that direct gonad morphogenesis. A pat-3 gene with Tyr to Phe mutations in the cytoplasmic domain was able to rescue pat-3 null animals but also showed DTC migration defects. These results show that betapat-3 plays important roles in post-embryonic organogenesis and tissue function.  相似文献   

18.
Disabled-1 interacts with a novel developmentally regulated protocadherin.   总被引:6,自引:0,他引:6  
Disabled-1 (Dab1) is an intracellular adapter protein that mediates the effect of Reelin on neuronal migration and cell positioning during mammalian brain development. To identify components of the Reelin-Dab1 signaling pathway, we searched for proteins that interact with Dab1 using a yeast two-hybrid strategy. We found that the Dab1 phosphotyrosine binding (PTB) domain interacts with a novel protocadherin, orthologous to human protocadherin 18. Mouse Pcdh18 (mPcdh18), which consists of four exons similar to other protocadherin family members, maps to chromosome 3. The deduced amino acid sequence of mPcdh18 contains six extracellular cadherin motifs, a single transmembrane region, and a large intracellular domain. The site of Dab1 interaction was localized to the C-terminal 243 residues of mPcdh18. Expression analyses revealed that mPcdh18 is present in a variety of tissues in the embryo, but in adult mice it is primarily expressed in lung and kidney. In embryonic brain, mPcdh18 expression is temporally and spatially regulated. Our results indicate that mPcdh18 participates in signaling pathways involving PTB-containing proteins and suggest that it may play a role during brain development.  相似文献   

19.
Protogenin (PRTG) is a transmembrane protein of immunoglobulin superfamily, which has multiple roles in embryogenesis as a receptor or an adhesion molecule. In this study, we present sequential proteolytic cleavage of PRTG. The cleavage first occurs at the extracellular domain, then at the interface of the transmembrane and the intracellular domain by γ-secretase, which results in the release of the intracellular domain of PRTG (PRTG-ICD). PRTG-ICD contains putative nuclear localization signal (NLS) at its N-terminal, and translocates to the nucleus in cultured cells and in the neuroepithelial cells of chick embryos. We propose that the PRTG-ICD is cleaved by γ-secretase and translocates to the nucleus, which is potentially implicated in signaling for neural differentiation and in cell adhesion mediated by PRTG.  相似文献   

20.
Ahmed H  Du SJ  O'Leary N  Vasta GR 《Glycobiology》2004,14(3):219-232
Galectins are a family of beta-galactoside-binding lectins that on synthesis are either translocated into the nucleus or released to the extracellular space. Their developmentally regulated expression, extracellular location, and affinity for extracellular components (such as laminin and fibronectin) suggest a role in embryonic development, but so far this has not been unequivocally established. Zebrafish constitute an ideal model for developmental studies because of their external fertilization, transparent embryos, rapid growth, and availability of a large collection of mutants. As a first step in addressing the biological roles in zebrafish embryogenesis, we identified and characterized members of the three galectin types: three protogalectins (Drgal1-L1, Drgal1-L2, Drgal1-L3), one chimera galectin (Drgal3), and one tandem-repeat galectin (Drgal9-L1). Like mammalian prototype galectin-1, Drgal1-L2 preferentially binds to N-acetyllactosamine. Genomic structure of Drgal1-L2 revealed four exons, with the exon-intron boundaries conserved with the mammalian galectin-1. Interestingly, this gene also encodes an alternatively spliced form of Drgal1-L2 that lacks eight amino acids near the carbohydrate-binding domain. Zebrafish galectins exhibited distinct patterns of temporal expression during embryo development. Drgal1-L2 is expressed postbud stage, and its expression is strikingly specific to the notochord. In contrast, Drgal1-L1 is expressed maternally in the oocytes. Drgal1-L3, Drgal3, and Drgal9-L1 are expressed both maternally and zygotically, ubiquitously in the adult tissues. The distinct temporal and spatial patterns of expression of members of the zebrafish galectin repertoire suggest that each may play distinct biological roles during early embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号