共查询到20条相似文献,搜索用时 31 毫秒
1.
The increased migration and invasion of oral squamous cell carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. Although the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1α, have been found to play an important role in tumor invasion, its precise role and potential underlying mechanisms remain largely unknown. In this study, we showed that knockdown of CXCR4 significantly decreased Tca8113 cells migration and invasion, accompanied with the reduction of MMP-9 and MMP-13 expression. Inhibition of ligand binding to CXCR4 by a specific antagonist TN14003, also led to reduced cancer cell migration and invasion. Because the degradation of the extracellular matrix and the basement membrane by proteases, such as matrix metalloproteinases (MMP) is critical for migration and invasion of cancer cells, we investigated the expression of several MMPs and found that the expression of functional MMP-9 and MMP-13 was selectively decreased in CXCR4 knockdown cells. More importantly, decreased cell migration and invasion of CXCR4 knockdown cells were completely rescued by exogenous expression of MMP-9 or MMP-13, indicating that the two MMPs are downstream targets of CXCR4-mediated signaling. Furthermore, we found the level of phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased in CXCR4-silenced cells, suggesting that ERK may be a potential mediator of CXCR4-regulated MMP-9 and MMP-13 expression in Tca8113 cells. Taken together, our results strongly suggest the underlying mechanism of CXCR4 promoting Tca8113 migration and invasion by regulating MMP-9 and MMP-13 expression perhaps via activation of the ERK signaling pathway. 相似文献
2.
Kummer NT Nowicki TS Azzi JP Reyes I Iacob C Xie S Swati I Darzynkiewicz Z Gotlinger KH Suslina N Schantz S Tiwari RK Geliebter J 《Journal of cellular biochemistry》2012,113(6):1998-2008
Arachidonate 5-lipoxygenase (ALOX5) expression and activity has been implicated in tumor pathogenesis, yet its role in papillary thyroid carcinoma (PTC) has not been characterized. ALOX5 protein and mRNA were upregulated in PTC compared to matched, normal thyroid tissue, and ALOX5 expression correlated with invasive tumor histopathology. Evidence suggests that PTC invasion is mediated through the induction of matrix metalloproteinases (MMPs) that can degrade and remodel the extracellular matrix (ECM). A correlation between MMP-9 and ALOX5 protein expression was established by immunohistochemical analysis of PTC and normal thyroid tissues using a tissue array. Transfection of ALOX5 into a PTC cell line (BCPAP) increased MMP-9 secretion and cell invasion across an ECM barrier. The ALOX5 product, 5(S)-hydroxyeicosatetraenoic acid also increased MMP-9 protein expression by BCPAP in a dose-dependent manner. Inhibitors of MMP-9 and ALOX5 reversed ALOX5-enhanced invasion. Here we describe a new role for ALOX5 as a mediator of invasion via MMP-9 induction; this ALOX5/MMP9 pathway represents a new avenue in the search for functional biomarkers and/or potential therapeutic targets for aggressive PTC. 相似文献
3.
Epb41l3 suppresses esophageal squamous cell carcinoma invasion and inhibits MMP2 and MMP9 expression
Rong Zeng Jun‐peng Huang Xu feng Li Wei‐bin Xiong Gang Wu Zhao‐jing Jiang Shu‐jie Song Ji‐qiang Li Yan‐fang Zheng Ji‐ren Zhang 《Cell biochemistry and function》2016,34(3):133-141
EPB41L3 may play a role as a metastasis suppressor by supporting regular arrangements of actin stress fibres and alleviating the increase in cell motility associated with enhanced metastatic potential. Downregulation of epb41l3 has been observed in many cancers, but the role of this gene in esophageal squamous cell carcinoma (ESCC) remains unclear. Our study aimed to determine the effect of epb41l3 on ESCC cell migration and invasion. We investigated epb41l3 protein expression in tumour and non‐tumour tissues by immunohistochemical staining. Expression in the non‐neoplastic human esophageal cell line Het‐1a and four ESCC cell lines – Kyse150, Kyse510, Kyse450 and Caes17 – was assessed by quantitative Polymerase Chain Reaction (qPCR) and Western blotting. Furthermore, an EPB41L3 overexpression plasmid and EPB41L3‐specific small interfering RNA were used to upregulate EPB41L3 expression in Kyse150 cells and to downregulate EPB41L3 expression in Kyse450 cells, respectively. Cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The expression levels of p‐AKT, matrix metalloproteinase (MMP)2 and MMP9 were evaluated. Expression of epb41l3 was significantly lower in tumour tissues than in non‐tumour tissues and in ESCC cell lines compared with the Het‐1a cell line. Kyse450 and Caes17 cells exhibited higher expression of epb41l3 than Kyse150 and Kyse510 cells. Overexpressing epb41l3 decreased Kyse150 cell migration and invasion, whereas EPB41L3‐specific small interfering RNA silencing increased these functions in Kyse450 cells. Furthermore, overexpressing epb41l3 led to downregulation of MMP2 and MMP9 in Kyse150 and Kyse510 cells. Our findings reveal that EPB41L3 suppresses tumour cell invasion and inhibits MMP2 and MMP9 expression in ESCC cells. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
WAVE3 is a member of the WASP/WAVE family of proteins, which play a critical role in the regulation of actin polymerization, cytoskeleton organization, and cell motility. We show here that knockdown of the WAVE3 protein, using RNA interference in MDA-MB-231 cells, decreases phospho-p38 MAPK levels, but not those of phospho-AKT, phospho-ERK, or phospho-JNK. Knockdown of WAVE3 expression also inhibited the expression levels of MMP-1, MMP-3, and MMP-9, but not MMP-2. MMP production could be restored by PMA treatment, without affecting siRNA-mediated WAVE3 knockdown. The WAVE3-mediated downregulation of p38 activity and MMP production is independent of the presence of both WAVE1 and WAVE2, whose expression levels were not affected by loss of WAVE3. We also show that the downstream effect of the WAVE3 knockdown is the inhibition of cell motility and invasion, coupled with increased actin stress fiber formation, as well as reorganization of focal adhesion complexes. These findings suggest that WAVE3 regulates actin cytoskeleton, cell motility, and invasion through the p38 MAPK pathway and MMP production. 相似文献
5.
Wanqin Liao Lixia Fan Mingchan Li Huizhi Deng Anping Yang Fang Liu 《Cell biology international》2021,45(5):948-956
Metastasis is a major cause of breast cancer death. MPP7 is a cell polarity controller highly linked to cell migration; however, the function of MPP7 in breast cancer remains unknown. In this study, we reported that MPP7 expression was upregulated in breast cancer tissues and high MPP7 expression predicted poor survival in patients with breast cancer. Ectopic expression of MPP7 markedly enhanced the migration and invasion in breast cancer cells. In contrast, depletion of MPP7 resulted in impaired cell mobility and metastasis. Moreover, we demonstrated that MPP7 exerted its promotional effect via modulation of EMT and activation of the EGFR/AKT cascade. Our study reveals an oncogenic role of MPP7 in breast cancer and suggests that MPP7 may serve as a potential target for exploring novel therapeutic strategies against breast cancer metastasis. 相似文献
6.
7.
Da Huang Xiaohong Du Rongfa Yuan Leifeng Chen Tiande Liu Chongyu Wen Mingwen Huang Ming Li Liang Hao Jianghua Shao 《Biochemical and biophysical research communications》2014
Rho-associated coiled-coil-containing protein kinase 2 (Rock2) is a downstream effector of Rho that plays an important role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). Matrix metalloproteinase 2 (MMP2) is a master regulator of tumor metastasis. In this study, we investigated the collections of Rock2 and MMP2 in HCCs and determined the potential role and molecular mechanism of Rock2 in MMP2-mediated invasiveness and metastasis. We found that Rock2 and MMP2 were markedly overexpressed in HCCs compared with the corresponding adjacent tissues, where a positive correlation in their expression was found. The knockdown of Rock2 significantly decreased MMP2 expression and inhibited the invasion and metastasis of HCC in vitro and in vivo. Additionally, the upregulation of MMP2 rescued the decreased migration and invasion induced by the knockdown of Rock2, whereas the knockdown of MMP2 decreased Rock2-enhanced HCC migration and invasion. Mechanistically, Rock2 stabilized MMP2 by preventing its ubiquitination and degradation. Together, our results link two drivers of invasion and metastasis in HCC and identify a novel pathway for MMP2 control. 相似文献
8.
9.
Abécassis I Olofsson B Schmid M Zalcman G Karniguian A 《Experimental cell research》2003,291(2):363-376
Much progress has been made in recent years in the understanding of angiogenesis, yet signalling pathways involved remain poorly defined. Here we report that small RhoA GTPase is implicated in the invasion of human microvascular endothelial cells (HMEC-1). Ectopic expression of active-RhoA GTPase induced the expression of MMP-9 metalloproteinase, a key proteinase of the basement membrane, and promoted migration of endothelial cells through a 3D-matrix protein gel. MMP-9 was either directed as vesicular-like patches to the apical side of cells, or addressed to specific membrane sites at the cell surface. Confocal microscopy analyses indeed revealed clustering of MMP-9 in advancing lamellipodia at the forefront of endothelial cells, where this proteinase colocalized with RhoA and CD44, a transmembrane receptor known to be proteolysed in tumor cell progression. In addition, TIMP-1, a natural MMP inhibitor, significantly reduced the invasion of RhoAV14 expressing cells, suggesting that MMP-9 was a critical metalloproteinase responsible, at least partly, for the RhoAV14-induced endothelial cell invasion. We propose that RhoA triggers signalling pathways that, upregulating expression of a proteinase at specific membrane localizations, may confer an highly invasive phenotype to endothelial cells. 相似文献
10.
It is well documented that S100A4 is upregulated in a large amount of invasive tumors and plays a pivotal role in tumor invasion
and metastasis. However, the precise role and mechanism S100A4 exerts in the invasion and metastasis of esophageal squamous
cell carcinoma (ESCC) have not been fully elucidated to date. Our data demonstrated that S100A4 was overexpressed in human
ESCC tissues, especially in ESCC with poor differentiation, deep invasion and lymph node metastasis. Subsequently, the knockdown
of S100A4 by RNAi in ESCC cell line (EC-1) could reduce cell invasion, metastasis and proliferation ability in vitro. Most
importantly, S100A4 regulated MMP-2 positively and E-cadherin negatively in vivo and in vitro to some extent. Our results
suggest that S100A4 is an important factor in the invasion, metastasis and proliferation of ESCC and may control invasion
and metastasis at least in part through the regulation of MMP-2 and E-cadherin activity. S100A4 may serve as a biomarker for
progression of ESCC and a potential molecular target for biotherapy of ESCC. 相似文献
11.
Bo Li Mei Chen Mei Lu Jiang Xin-Xiang Pan Meng-Xiong Mao Jun-Wu 《Free radical research》2018,52(4):390-401
Substantial evidence indicates that the alteration of the cellular redox status is a critical factor involved in cell growth and death and results in tumourigenesis. Cancer cells have an efficient antioxidant system to counteract the increased generation of ROS. However, whether this ability to survive high levels of ROS has an important role in the growth and metastasis of tumours is not well understood. Glutaredoxin 3 (GLRX3), also known as TXNL2, Grx3 and PICOT, maintains a low level of ROS, thus contributing to the survival and metastasis of several types of cancer. However, little is known about the role of GLRX3 and the underlying mechanisms that suppress oral squamous cell carcinoma (OSCC) progression. Here, by using immunohistochemical staining, we demonstrated that GLRX3 was overexpressed in human OSCC, and enhanced GLRX3 expression correlated with metastasis and with decreased overall patient survival. Knockdown of GLRX3 in human OSCC cell lines reduced Notch activity by reversing the epithelial–mesenchymal transition (EMT), resulting in the inhibition of in vitro migration and invasion. Importantly, knockdown of GLRX3 triggered the generation of ROS. Furthermore, N-acetyl cysteine (NAC), an ROS scavenger, enhanced the effects of GLRX3 knockdown on Notch-dependent EMT. Collectively, these findings suggested the vital roles of GLRX3 in OSCC progression through its relationship with EMT progression, and these data also suggest that a strategy of blocking ROS to enhance the activity of GLRX3 knockdown warrants further attention in the treatment of OSCC. 相似文献
12.
13.
Rao Q Wang JY Meng J Tang K Wang Y Wang M Xing H Tian Z Wang J 《Cell biology international》2011,35(9):945-951
E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells. 相似文献
14.
Bao-zhang Guan Rui-ling Yan Jian-Wei Huang Fo-Lan Li Ying-Xue Zhong Yu Chen 《Cell Adhesion & Migration》2018,12(2):109-117
Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. However, the mechanisms responsible for RCC metastasis are still needed further illustration. Our present study revealed that a seven-transmembrane receptor G-protein coupled estrogen receptor (GPER) was highly detected in various RCC cell lines such as ACHN, OS-RC-2 and SW839. The activation of GPER by its specific agonist G-1 significantly promoted the in vitro migration and invasion of ACHN and OS-RC-2 cells. G-1 also up regulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. The inhibitor of MMP-9 (Cat-444278), but not MMP-2 (Sc-204092), abolished G-1 induced cell migration, which suggested that MMP-9 is the key molecule mediating G-1 induced RCC progression. Further, G-1 treatment resulted in phosphorylation of AKT and ERK in RCC cells. PI3K/AKT inhibitor (LY294002), while not ERK inhibitor (PD98059), significantly abolished G-1 induced up regulation of MMP-9 in both AHCN and OS-RC-2 cells. Generally, our data revealed that activation of GPER by its specific agonist G-1 promoted the metastasis of RCC cells through PI3K/AKT/MMP-9 signals, which might be a promising new target for drug discovery of RCC patients. 相似文献
15.
Ming-Der Shi Hui-Hsuan Lin Tai-An Chiang Li-Yu Tsai Shu-Mei Tsai Yi-Chieh Lee Jing-Hsien Chen 《Chemico-biological interactions》2009,180(3):344-352
Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to have potent anti-cancer activity against human colorectal carcinoma Lovo cells by inhibiting cell-cycle progression. To further investigate the mechanism for the anti-cancer properties of Andro, it was used to examine the effect on migration and invasion of Lovo cells. The results of wound-healing assay and in vitro transwell assay revealed that Andro inhibited dose-dependently the migration and invasion of Lovo cells under non-cytotoxic concentrations. Using zymographic assay and RT-PCR, the results revealed that Andro diminished the activity and the mRNA and protein levels of MMP-7, but not MMP-2 or MMP-9. The down-regulation of MMP-7 appeared to be via the inactivation of activator protein-1 (AP-1) since the treatment with Andro suppressed the nuclear protein level of AP-1, which was accompanied by a decrease in DNA-binding level of the factor. Taken together, these results indicated that Andro reduces the MMP-7-mediated cellular events in Lovo cells, and provided a new mechanism for its anti-cancer activity. 相似文献
16.
17.
《Biomarkers》2013,18(7):577-586
The aim of this study was to explore the association of MMP-2 (-1306 C/T and -168 G/T) and MMP-9 (-1562 C/T) promoter polymorphisms in oral submucous fibrosis (OSMF) and head and neck squamous cell carcinoma (HNSCC) cases. These SNP were genotyped by PCR-RFLP. Total of 1260 individuals were recruited, of which 412 OSMF, 422 HNSCC and 426 were controls. In HNSCC, MMP-2 (-1306 C/T) and MMP-9 (-1562C/T) polymorphism, T allele showed strong association (p < 0.00 and p < 0.01) as compared to healthy control respectively, but not in case of OSMF and showed significant association with increasing progression of clinico-pathological grading. We concluded that SNPs in the MMP-2 and -9 promoter region may be associated with susceptibility to HNSCC not in OSMF. 相似文献
18.
19.
Liang Han Mingming Tang Xinjiang Xu Bin Jiang Yingze Wei Hongyan Qian Xueguan Lu 《Journal of cellular biochemistry》2019,120(2):1245-1257
Previously we found that melanoma-associated antigen-A9 (MAGE-A9) was a significantly upregulated biomarker in laryngeal squamous cell carcinoma (LSCC). A high expression of MAGE-A9 indicates an unfavorable survival outcome, and the MAGE-A9 expression level is an independent prognostic factor of LSCC. To explore the mechanism of MAGE-A9 upregulation, several predicted regulatory microRNAs were screened and validated in LSCC cells. In the current study, we found that miR-143-3p (MAGE-A9 related miRNAs) expression levels correlated negatively with the MAGE-A9 protein expression in LSCC tissues. Dual-luciferase reporter assays and Western blot analysis revealed MAGE-A9 to be a direct target of miR-143-3p. Furthermore, a series of in vitro gain- and loss-of-function assays revealed that miR-143-3p inhibited LSCC cell proliferation, migration, and invasion. Also, miR-143-3p suppressed LSCC tumorigenesis in vivo. These effects were clinically relevant, as a lower expression of miR-143-3p occurred in severer clinical stages and represented poor overall survival in patients with LSCC. Taken together, these results suggest that downregulation of miR-143-3p contributes to tumor progression through upregulation of MAGE-A9. The expression level of these two key molecules maintained LSCC progression, thus, highlighting the potential of miR-143-3p as a therapeutic target for human LSCC. 相似文献
20.
Qi Chen Kun Wu Xing Qin Youcheng Yu Xu Wang Kuijie Wei 《Journal of cellular and molecular medicine》2020,24(2):1626-1639
LIM and SH3 protein 1 (LASP1) is a specific focal adhesion protein that promotes metastasis in a variety of tumours. However, its role in head and neck squamous cell carcinoma (HNSCC) has not been fully validated. The purpose of this study was to analyse the interaction of LASP1 and its binding partner in HNSCC. The expression of LASP1 and HSPA1A in HNSCC was analysed by real‐time PCR and Western blot. The effects of LASP1 on the biology behaviour of HNSCC cell lines were observed in vivo and in vitro. Co‐immunoprecipitation analysis was performed to confirm the interaction between LASP1 and HSPA1A. LASP1 was highly expressed in HNSCC and associated with poor prognosis for patients. LASP1 also promoted cell proliferation, colony formation, invasion and cell cycle G2/M phase transition. Heat shock protein family A member 1A (HSPA1A) is identified as a chaperone protein of LASP1 and co‐localized in the cytoplasm. HSPA1A positively regulates the interaction of LASP1 with P‐AKT and enhances the malignant behaviour of HNSCC cells. LASP1 and HSPA1A are both up‐regulated in HNSCC, and directly binds to each other. Double inhibition of LASP1 and HSPA1A expression may be an effective method for the treatment of HNSCC. 相似文献