共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
It was shown for the first time that when the livers of 14 day-old mouse fetuses was transplanted under the renal capsule or in the subcutaneous connective tissue of adult recipients, successive de novo formation of hyaline cartilage, bone, and hemopoietic foci took place. We propose that the liver mesenchyme, which preserves wider differentiation potencies in fetuses, is the cellular source of different types of mechanocytes: cartilaginous, bone, and reticular cells. 相似文献
3.
The present study aimed to investigate the role of a retinoic acid receptor-β (RARβ) inhibitor LE135 on TGF-β induced chondrogenesis of human bone marrow mesenchymal stem cells (hMSCs). Pellet culture with exogenous transforming growth factor-β (TGF-β), and a mechanically loaded scaffold system were used to provide two culture models. All samples were cultured for 8 days and changes in early gene expression were determined. Glycosaminoglycan and mRNA expression data showed that LE135 itself did not induce any chondrogenic response in either pellet culture or scaffold culture of hMSCs. LE135 actually inhibited the chondrogenic response caused by exogenous TGF-β, or endogenous TGF-β induced by mechanical load, while the expression of genes normally associated with osteogenesis was not affected. This suggests that the inhibitor LE135 affects the osteochondral differentiation pathway at a different stage, inhibiting chondrogenic gene expression while having no effect on genes normally associated with the osteogenic phenotype. Alternatively, it might be that different cells were proceeding down different lineages. Some cells were undergoing chondrogenesis and this was affected by LE135, while other cells underwent osteogenic differentiation and were not affected by LE135. 相似文献
4.
5.
Katayoon Pakravan Ehsan Razmara Bashdar Mahmud Hussen Fatemeh Sattarikia Majid Sadeghizadeh Sadegh Babashah 《Journal of cellular and molecular medicine》2022,26(1):1
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called ‘SMAD4’) have been discussed in different cancers and stem cell‐related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors—ie DNA methylation, histone modifications and noncoding RNAs—make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype‐phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals. 相似文献
6.
Uyama Y Yagami K Hatori M Kakuta S Nagumo M 《Differentiation; research in biological diversity》2004,72(1):32-40
We examined osteo-chondrogenic differentiation of a human chondrocytic cell line (USAC) by rhBMP-2 in vivo and in vitro. USAC was established from a transplanted tumor to athymic mouse derived from an osteogenic sarcoma of the mandible. USAC usually shows chondrocytic phenotypes in vivo and in vitro. rhBMP-2 up-regulated not only the mRNA expression of types II and X collagen, but also the mRNA expression of osteocalcin and Cbfa1 in USAC cells in vitro. In vivo experimental cartilaginous tissue formation was prominent in the chamber with rhBMP-2 when compared with the chamber without rhBMP-2. USAC cells implanted with rhBMP-2 often formed osteoid-like tissues surrounded by osteoblastic cells positive for type I collagen. rhBMP up-regulated Ihh, and the expression of Ihh was well correlated with osteo-chondrogenic cell differentiation. These results suggest that rhBMP-2 promotes chondrogenesis and also induces osteogenic differentiation of USAC cells in vivo and in vitro through up-regulation of Ihh. 相似文献
7.
8.
Xin Cheng Pei-Zhi Li Guang Wang Yu Yan Ke Li Beate Brand-Saberi Xuesong Yang 《Journal of cellular physiology》2019,234(3):2593-2605
Accumulating data show that the cytotoxicity of bacterial lipopolysaccharides (LPS) from microbiota or infection is associated with many disorders observed in the clinics. However, it is still obscure whether or not embryonic osteogenesis is affected by the LPS exposure during gestation. Using the early chicken embryo model, we could demonstrate that LPS exposure inhibits chondrogenesis of the 8-day chicken embryos by Alcian Blue-staining and osteogenesis of 17-day by Alcian Blue and Alizarin Red staining. Further analysis of the growth plates showed that the length of the proliferating zone (PZ) increases whereas that of the hypertrophic zone (HZ) decreased following LPS exposure. However there is no significant change on cell proliferation in the growth plates. Immunofluorescent staining, western blot analysis, and quantitive polymerase chain reaction revealed that Sox9 and Col2a1 are highly expressed at the messenger RNA level and their protein products are also abundant. LPS exposure causes a downregulation of Runx2 and Col10a1 expression in 8-day hindlimbs, and a suppression of Runx2, Col10a1, and Vegfa expression in 17-day phalanges. Knocking down Sox9 in ATDC5 cells by small interfering RNA transfection lead to the expression reduction of Col2a1, Runx2, and Col10a1, implying the vital role of Sox9 in the process of LPS-induced delay in the transition from proliferating chondrocytes to hypertrophic chondrocytes in the growth plate. In the presence of LPS, the antioxidant defense regulator nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is highly expressed, and the activities of superoxide dismutase 1 (SOD1), SOD2, and glutaredoxin rise in 17-day phalanges and ADTC5 cells. Simultaneously, an increase of intracellular ROS is observed. When Nrf2 expression was knocked down in ATDC5 cells, the expressions of Sox9, Col2a1, Runx2, Col10a1, and Vegfa were also going down as well. Taken together, our current data suggest that LPS exposure during gestation could restrict the chondrocytes conversion from proliferating to hypertrophic in the growth plate, in which LPS-induced Sox9 plays a crucial role to trigger the cascade of downstream genes by excessive ROS production and Nrf2 elevation. 相似文献
9.
10.
Daniel J. Kelly Christopher R. Jacobs 《Birth defects research. Part C, Embryo today : reviews》2010,90(1):75-85
It is becoming increasingly clear that mesenchymal stem cell (MSC) differentiation is regulated by mechanical signals. Mechanical forces generated intrinsically within the cell in response to its extracellular environment, and extrinsic mechanical signals imposed upon the cell by the extracellular environment, play a central role in determining MSC fate. This article reviews chondrogenesis and osteogenesis during skeletogenesis, and then considers the role of mechanics in regulating limb development and regenerative events such as fracture repair. However, observing skeletal changes under altered loading conditions can only partially explain the role of mechanics in controlling MSC differentiation. Increasingly, understanding how epigenetic factors, such as the mechanical environment, regulate stem cell fate is undertaken using tightly controlled in vitro models. Factors such as bioengineered surfaces, substrates, and bioreactor systems are used to control the mechanical forces imposed upon, and generated within, MSCs. From these studies, a clearer picture of how osteogenesis and chondrogenesis of MSCs is regulated by mechanical signals is beginning to emerge. Understanding the response of MSCs to such regulatory factors is a key step towards understanding their role in development, disease and regeneration. Birth Defects Research (Part C) 90:75–85, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
11.
Blocking endogenous FGF-2 activity prevents cranial osteogenesis 总被引:3,自引:0,他引:3
Normal growth and morphogenesis of the cranial vault reflect a balance between cell proliferation in the sutures and osteogenesis at the margins of the cranial bones. In the clinical condition craniosynostosis, the sutures fuse prematurely as a result of precocious osteogenic differentiation and craniofacial malformation results. Mutations in several fibroblast growth factor receptor (FGFR) genes have now been identified as being responsible for the major craniosynostotic syndromes. We have used a grafting technique to manipulate the levels of endogenous FGF-2 ligand in embryonic chick cranial vaults and thereby perturb morphogenesis. Implantation of beads loaded with FGF-2 did not affect normal cranial development at physiological concentrations, although they elicited a morphogenetic response in the limb. Implantation of beads loaded with a neutralising antibody to FGF-2 generated a concentration-dependent response. When a single bead was implanted, the grafts grew to a massive size as a result of increased cell division in the tissue. With greater inactivation of FGF-2 protein (two to three beads implanted), all further bone differentiation and cell proliferation was blocked. These data further support the emerging idea that the intensity of FGF-mediated signalling determines the developmental fate of the skeletogenic cells in the cranial vault. High and low levels correlate with differentiation and proliferation, respectively. A balance between the two ensures normal cranial vault morphogenesis. This is consistent with the observation that several FGFR mutations causing craniosynostosis result in constitutive activation of the receptor. 相似文献
12.
Shapiro MD 《Journal of morphology》2002,254(3):211-231
Digit loss is a common theme in tetrapod evolution that may involve changes in several developmental processes. The skink genus Hemiergis provides an ideal model to study these processes in closely related taxa: within three Western Australian Hemiergis species, digit quantity ranges between two and five. For three consecutive reproductive seasons, gravid females of Hemiergis were collected in the field and their embryos prepared for histological analysis of limb skeletal development (chondrogenesis and osteogenesis). Comparative studies of skeletal developmental morphology demonstrate that limbs with fewer than five digits do not result from a simple truncation of a putative ancestral (five-digit) developmental program. The developmental and adult morphologies in two-, three-, and four-digit Hemiergis are neither predicted nor explained by a simple model of heterochrony involving either chondrogenesis or osteogenesis. In postnatal Hemiergis, digit number and relative limb length do not correlate in a simple linear fashion. Instead, limb size and digit reduction may correlate with substrate conditions and burrowing behavior. 相似文献
13.
Kulkarni NH Wei T Kumar A Dow ER Stewart TR Shou J N'cho M Sterchi DL Gitter BD Higgs RE Halladay DL Engler TA Martin TJ Bryant HU Ma YL Onyia JE 《Journal of cellular biochemistry》2007,102(6):1504-1518
Parathyroid hormone (PTH) and glycogen synthase kinase-3 (GSK-3) inhibitor 603281-31-8, administered once daily increased bone formation in vivo. We investigated the molecular mechanisms of the anabolic responses of PTH and 603281-31-8 in rat osteopenia model. Female 6-month-old rats were ovariectomized (Ovx) and permitted to lose bone for 1 month, followed by treatment with PTH (1-38) at 10 microg/kg/day s.c. or 603281-31-8 at 3 mg/kg/day p.o. for 60 days. Twenty-four hours after the last treatment, RNA from distal femur metaphysis was subjected to gene expression analysis. Differentially expressed genes (P<0.05) were subjected to pathway analysis to delineate relevant bio-processes involved in skeletal biology. Genes involved in morphogenesis, cell growth/differentiation, and apoptosis were significantly altered by Ovx and the treatments. Analysis of morphogenesis genes showed an overrepresentation of genes involved in osteogenesis, chondrogenesis, and adipogenesis. A striking finding was that Ovx decreased several markers of osteogenesis/chondrogenesis and increased markers of adipogenesis/lipid metabolism. Treatment with either PTH or the GSK-3 inhibitor reversed these effects, albeit at different levels. Histological analysis confirmed that osteopenia in Ovx animals was associated with three-fold increase in marrow adiposity. PTH and GSK-3 inhibitor restored bone volume, and reversed or normalized marrow adiposity. Ex vivo studies showed that PTH and GSK-3 inhibitor increased the ratio of colony forming marrow stromal progenitors (CFU-fs) that were alkaline phosphatase positive (putative osteoblasts). Our results suggest that the bone anabolic actions of PTH and GSK-3 inhibitor in vivo involve concerted effects on mesenchymal lineages; osteoblasts, chondrocytes, and adipocytes. 相似文献
14.
15.
Silin Liu Zuolin Jin Meng Cao Dandan Hao Chunrong Li Doudou Li Weiwei Zhou 《Genetics and molecular biology》2021,44(3)
Osteoporosis is a condition of the skeleton that mainly results from estrogen deficiency. Periostin is a matricellular component in bone that is involved in osteoblast differentiation. However, how Periostin promotes osteogenesis remains largely unknown. Here, we isolated bone marrow skeletal stem cells (BMSCs) derived from an ovariectomy (OVX)-induced osteoporosis rat model and the effects of periostin on BMSCs derived from OVX rats (OVX-BMSCs) were assessed. Overexpression of periostin enhanced alkaline phosphatase (ALP) and alizarin red staining in OVX-BMSCs as well as the osteogenic genes OCN, BSP and Runx2. ILK is a downstream effector of signals from the extracellular matrix and participates in bone homeostasis. Overexpression of periostin also increased expression of protein levels for ILK, as well as the downstream targets pAkt and pGSK3β. Suppression of ILK or Akt partially suppressed the enhancement of osteogenic ability induced by periostin overexpression in OVX-BMSCs. Thus, periostin may promote the osteogenic ability of OVX-BMSCs through actions on the ILK/Akt/GSK3β axis. 相似文献
16.
17.
Zun Wang Xiaohua Li Junxiao Yang Yun Gong Huixi Zhang Xiang Qiu Ying Liu Cui Zhou Yu Chen Jonathan Greenbaum Liang Cheng Yihe Hu Jie Xie Xucheng Yang Yusheng Li Martin R. Schiller Yiping Chen Lijun Tan Si-Yuan Tang Hui Shen Hong-Mei Xiao Hong-Wen Deng 《International journal of biological sciences》2021,17(15):4192
18.
Bone formation in the embryo, and during adult fracture repair and remodeling, involves the progreny of a small number of cells called mesenchymal stem cells (MSCs). These cells continuously replicate themselves, while a portion become committed to mesenchymal cell lineages such as bone, cartilage, tendon, legament and muscle. The differentiation of these cells, within each lineage, is a complex multistep pathway involving discrete cellular trasitions much like that which occurs during hematopoiesys. Progression from one stage to the next depends on the presence of specific bioactive factors, nutrients, and other environmental cues whose exquisitely controlled contributions orchestrate the entire differentiation phgenomenon. As understanding of the cellular and molecular events of osteogenic differentiation of MSCs provides the foundation for the emergence of a new therapeutic technilogy for cell therapy. The isolation and in vitro mitotic expansion of autologous human MSCs will support the development of novel protocols for the treatment of many clinically challenging conditions. For example, local bone defects can be repaired through site-directed delivery of MSCs in an appropriate carrier vehicle. Generalized conditions, such as osteoporosis, may be treatable by systemic administration of culture-expanded autologous MSCs or through biopharmaceutical regimens based on the discovery of critical regulatory molecules in the differentiation process. With this in mind, we can begin to explore therapeutic options that have never before been available. 相似文献
19.
Wenlei Li Jing Zhao Jialu Wang Lian Sun Haiyang Xu Wen Sun Yongchu Pan Hua Wang Wei-Bing Zhang 《Journal of cellular physiology》2020,235(9):5972-5984
20.
The posterior border of the sphenoid greater wing and its phylogenetic usefulness in human evolution
Jos Braga Eric Crubzy Mustapha Elyaqtine 《American journal of physical anthropology》1998,107(4):387-399
The elucidation of patterns of cranial skeletal maturation and growth in fossil hominids is possible not only through dental studies but also by mapping different aspects of ossification in both extant African apes and humans. However, knowledge of normal skeletal development in large samples of extant great apes is flimsy. To remedy this situation, this paper offers an extensive survey and thorough discussion of the ossification of the posterior border of the sphenoid greater wing. Indeed, this area provides much information about basicranial skeletal maturation. We investigate three variants: the absence of the foramen spinosum and the position of both the foramen spinosum and the foramen ovale in relation to the sphenosquamosal suture. Providing original data about humans and 1,425 extant great ape skulls and using a sample of 64 fossil hominids, this study aimed to test whether different ossification patterns occurred during the course of human evolution. The incidence of three derived morphologies located on the posterior border of the sphenoid greater wing increases during human evolution at different geological periods. The evolutionary polarity of these three derived morphologies is assessed by outgroup comparison and ontogenetic methods. During human evolution, there is a clear trend for the foramen spinosum to be present and wholly located on the posterior area of the sphenoid greater wing. Moreover, in all the great ape species and in Australopithecus afarensis, the sphenosquamosal suture may split the foramen ovale. Inversely, the foramen ovale always lies wholly within the sphenoid greater wing in Australopithecus africanus, robust australopithecines, early Homo, H. erectus (and/or H. ergaster), and Homo sapiens. From ontogenetic studies in humans, we conclude that, during human evolution, the ossification of the posterior area of the sphenoid greater wing progressively surrounded the middle meningeal artery (passing through the foramen spinosum) and the small meningeal artery (passing through the foramen ovale). Am J Phys Anthropol 107:387–399, 1998. © 1998 Wiley-Liss, Inc. 相似文献