首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence selectivity of [125I]Hoechst 33258 in six 340 base-pair DNA sequences has been investigated. [125I]Hoechst 33258, which is a bis-benzimidazole and binds to the minor groove of B-DNA, preferentially binds to A + T-rich regions of DNA. Six out of nine strong binding sites contained four or more consecutive A.T base-pairs, while the other three strong binding sites were AAGGATT, TATAGAAA (the peak of damage was in the run of 3 A residues) and AAA. One of the six weak binding sites had five consecutive A.T base-pairs, two of the weak binding sites had three, and three did not have any. In addition to genomic 340 base-pair alpha RI-DNA (which is a tandem repeat in human cells), five 340 base-pair alpha RI-DNA clones were generated that differed from the genomic "consensus" sequence by a number of random base alterations. The effect of these base changes on the sequence specificity of [125I]Hoechst 33258 damage indicated that of the base changes that interrupted 14 binding sites, six decreased and eight did not change the extent of damage, while two sites changed position. Of the base alterations that augmented 17 binding sites, five increased, two decreased and ten did not alter the degree of cleavage, while ten sites changed position. It was concluded from the data that, while runs of consecutive A.T base-pairs was the most important parameter that determines [125I]Hoechst 33258 binding, other factors including position in the DNA sequence, nearest neighbour and long-range interactions were also important.  相似文献   

2.
The sequence specificity of bleomycin damage was investigated utilising 340 bp alpha-DNA (a middle repetitive sequence in the human genome) as a target sequence. The following significant facts were found:- i) The dinucleotides GT and GC were cleaved on all occasions, GA most of the time, and AT, AC, GG and AA cleaved some of the time; ii) The base immediately 5' to the purine-pyrimidine dinucleotides was found to be statistically highly significant in determining the degree of damage caused by bleomycin, while other nearest neighbour bases had no significant effect; iii) The sequence specificity of bleomycin damage was determined on both strands and it was found that damage on either strand follows the above dinucleotide preference and is independent of the extent of damage on the opposite strand; iv) Bleomycin damage was compared between genomic 340 bp alpha-DNA and a cloned alpha-DNA with eleven base substitutions relative to the "consensus" sequence. There were forty-nine detectable differences in intensity of damage between these two DNA molecules. Although four of the differences can be directly attributed to changes in base sequence, the remaining differences were not at the base substitution sites. Some of the differences were over fifty base pairs from the nearest base substitution. We propose that the majority of these differences are due to microvariation in the structure of DNA with a slightly different DNA sequence.  相似文献   

3.
DNA isolated from lambda phage was treated with bleomycin A2 plus Fe2+. The bleomycin-damaged DNA was added to lambda packaging extracts and the resulting phage were grown in SOS-induced E. coli. Under these conditions, treatment of the DNA with 0.8 microM bleomycin reduced the viability of the repackaged phage to 3% and increased the frequency of clear-plaque mutants in the progeny by a factor of 16. Bleomycin-induced mutations which mapped to the DNA-binding domain of the cI gene were subjected to DNA-sequence analysis. The most frequent events were single-base substitutions at G:C base pairs, nearly all of which occurred at cytosines in the sequence Py-G-C. Cytosines in the third position of the sequence C-G-C-C were particularly susceptible to mutation. At A:T base pairs, mutations were less frequent and were a mixture of single-base substitutions and -1 frameshifts, occurring primarily at G-T and A-T sequences. Thus, the overall specificity of bleomycin-induced mutations matches that of bleomycin-induced DNA lesions (strand breaks and apyrimidinic sites), which are formed at G-C (particularly Py-G-C), G-T and, to a lesser extent, A-T sequences. Furthermore, the frequency of various types of substitutions was consistent with selective incorporation of A and T residues opposite apyrimidinic sites at these sequences. The highly selective nature of bleomycin-induced mutations may explain the lack of mutagenesis by this compound in a number of reversion assays.  相似文献   

4.
Sequence specificity of 125I-labelled Hoechst 33258 in intact human cells   总被引:2,自引:0,他引:2  
Using polyacrylamide/urea DNA sequencing gels, the DNA sequence selectivity of 125I-labelled Hoechst 33258 damage has been determined in intact human cells to the exact base-pair. This was accomplished using a novel procedure with human alpha RI-DNA as the target DNA sequence. In this procedure, after size fractionation, the alpha RI-DNA is selectively purified by hybridization to a single-stranded M13 clone containing an alpha RI-DNA insert. The sequence specificity of [125I]Hoechst 33258 was indistinguishable in intact cells from purified high molecular weight DNA; and this is surprising considering the more complex environment of DNA in the nucleus where DNA is bound to nucleosomes and other DNA binding proteins. The ligand preferentially binds to DNA sequences which have four or more consecutive A.T base-pairs. The extent of damage was measured with a densitometer and, relative to the damage hotspot at base-pair 94, the extent of damage was similar in both purified high molecular weight DNA and intact cells. [125I]Hoechst 33258 causes only double-strand breaks, since single-strand breaks or base damage were not detected. These experiments represent the first occasion that the sequence specificity of a DNA damaging agent, which causes only double-strand breaks, has been determined to the exact base-pair in intact cells.  相似文献   

5.
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5′-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5′-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5′-GT*A and 5′- TGT* trinucleotide sequences, and 5′-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5′-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine–pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the ?3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.  相似文献   

6.
Recombinant clones containing the highly repetitive human DNA sequence approximately 340 base-pairs in length obtained after EcoRI digestion (αRI-DNA) were cloned in plasmid pAT153. Two clones contained a single copy of the αRI-DNA sequence, and the third had an insert with two copies of the sequence in tandem. When radioactive recombinant DNA was hybridized to total human DNA partially digested with EcoRI, a series of multiple bands was obtained up to 22 repeats in length, demonstrating that the αRI-DNA sequences occur in tandem arrays in the genomic DNA. A reassociation analysis using isolated insert DNA from one of the recombinant clones showed that the family of sequences is repeated 22,000 times in the human genome. Clones containing the αRI-DNA sequence were also isolated from a library of human genomic DNA in bacteriophage λ. Using these clones it was shown that, in at least some cases, the repetitive element is bounded by DNA less abundant than the αRI sequence.  相似文献   

7.
Bleomycin is an antibiotic drug that is widely used in cancer chemotherapy. Telomeres are located at the ends of chromosomes and comprise the tandemly repeated DNA sequence (GGGTTA) n in humans. Since bleomycin cleaves DNA at 5??-GT dinucleotide sequences, telomeres are expected to be a major target for bleomycin cleavage. In this work, we determined the DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. This was accomplished using a linear amplification procedure, a fluorescently labelled oligonucleotide primer and capillary gel electrophoresis with laser-induced fluorescence detection. This represents the first occasion that the DNA sequence specificity of bleomycin cleavage in telomeric DNA sequences in human cells has been reported. The bleomycin DNA sequence selectivity was mainly at 5??-GT dinucleotides, with lesser amounts at 5??-GG dinucleotides. The cellular bleomycin telomeric DNA damage was also compared with bleomycin telomeric damage in purified human genomic DNA and was found to be very similar. The implications of these results for the understanding of bleomycin??s mechanism of action in human cells are discussed.  相似文献   

8.
The mutational spectrum of bleomycin was compared with the spontaneous mutational spectrum in lacZ mouse kidney. Mice were treated with four 20 mg/kg of doses of bleomycin over a two-week period, leading to a mutant fraction several times greater than that of controls. The major class of bleomycin-induced mutations consisted of small deletions, in particular -1 deletions at AT base pairs and hot spots for deletions at 5'-GTC-3' sequences. Smaller, but significant fractions of GC > AT followed by GC > TA substitutions were also observed. In untreated mice, the major class of mutations consisted of GC > AT substitutions followed by GC > TA mutations, and a much smaller fraction of deletions. Other than the specificity of bleomycin for AT base pairs and the 5'-GTC-3' hotspots, the mutational spectrum of bleomycin in mice is similar to that reported for ionizing radiation. However, bleomycin initially mediates the formation of oxidized DNA via reduction of molecular oxygen, as opposed to the radiolysis of water. In this respect mutagenesis induced by bleomycin may be more similar to that induced by endogenous reactive oxygen species (ROS) than mutagenesis induced by ionizing radiation. If bleomycin-induced mutagenesis is an appropriate model for mutagenesis induced by ROS, then, based on the difference between the mutational spectrum of bleomycin and spontaneous mutagenesis, the latter appears not to result predominantly from ROS, at least in mouse kidney.  相似文献   

9.
The DNA sequence specificity of the cancer chemotherapeutic agent bleomycin was examined in a human telomeric DNA sequence and compared with that of non-telomeric sequences. The target DNA sequence contained 17 repeats of the human telomeric sequence and other primary sites of bleomycin cleavage. The 377-base-pair target DNA was fluorescently labelled at the 3′-end, damaged with bleomycin and electrophoresed in an ABI 3730 automated capillary sequencer to determine the intensity and sequence specificity of bleomycin damage. The results revealed that bleomycin cleaved primarily at 5′-GT in the telomeric sequence 5′-GGGTTA. Maxam–Gilbert chemical sequencing reactions were utilised as DNA size markers to determine the precise sites of bleomycin cleavage. The telomeric region contained strong sites of bleomycin cleavage and constituted 57% of the 30 most intense bleomycin damage sites in the DNA sequence examined. These data indicated that telomeric DNA sequences are a major site for bleomycin damage.  相似文献   

10.
D Cobrinik  R Katz  R Terry  A M Skalka    J Leis 《Journal of virology》1987,61(6):1999-2008
Integration of retroviral DNA is a site-specific reaction involving an endonuclease encoded by the viral pol gene (pol-endo). In vitro the pol-endo from avian sarcoma and leukosis viruses (ASLVs) cleaves both DNA strands near the U5-U3 junction of tandem long terminal repeats (LTR-LTR junction) in single-stranded and replicative form (RF)-I substrates. We have reported previously that the sequences that are required for cleavage of single-stranded substrates by the alpha beta form of the pol-endo differ for the plus and minus strands (G. Duyk, M. Longiaru, D. Cobrinik, R. Kowal, P. deHaseth, A. M. Skalka, and J. Leis, J. Virol. 56:589-599, 1985). This is not the case with RF-I substrates, in which a maximum of 22 base pairs of U5 and 8 base pairs of U3 were required for alpha beta pol-endo cleavage in each strand. Insertion of a palindromic octanucleotide (CATCGATG) at the LTR-LTR junction abolished cleavage in RF-I but not in single-stranded DNA substrates. Deletion of the four nucleotides (TTAA) at the junction prevented cleavage in the plus strand of RF-I DNA, but did not affect cleavage of single-stranded DNA. Furthermore, the alpha beta form of ASLV pol-endo did not recognize heterologous LTR-LTR junction sequences from the reticuloendotheliosis virus or Moloney murine leukemia virus in either substrate form, despite their sequence and structural similarities to the ASLV junction. These results support a role for a sequence-specific interaction between the ASLV pol-endo and the LTR-LTR junction domains that are required for cleavage. By using the infectious Rous sarcoma virus clone pATV8-K, we introduced a set of deletions into the U5 region that would be incorporated into the LTR-LTR junction on viral replication. In the unintegrated provirus, the deletions started 43 base pairs from the LTR-LTR junction and extended various lengths toward the junction. Results of transfection studies with these clones indicated that the U5 sequences that are required for virus production in vivo correspond to those that are required for cleavage of RF-I DNA in vitro.  相似文献   

11.
12.
SgrAI is a type II restriction endonuclease with an unusual mechanism of activation involving run-on oligomerization. The run-on oligomer is formed from complexes of SgrAI bound to DNA containing its 8 bp primary recognition sequence (uncleaved or cleaved), and also binds (and thereby activates for DNA cleavage) complexes of SgrAI bound to secondary site DNA sequences which contain a single base substitution in either the 1st/8th or the 2nd/7th position of the primary recognition sequence. This modulation of enzyme activity via run-on oligomerization is a newly appreciated phenomenon that has been shown for a small but increasing number of enzymes. One outstanding question regarding the mechanistic model for SgrAI is whether or not the activating primary site DNA must be cleaved by SgrAI prior to inducing activation. Herein we show that an uncleavable primary site DNA containing a 3’-S-phosphorothiolate is in fact able to induce activation. In addition, we now show that cleavage of secondary site DNA can be activated to nearly the same degree as primary, provided a sufficient number of flanking base pairs are present. We also show differences in activation and cleavage of the two types of secondary site, and that effects of selected single site substitutions in SgrAI, as well as measured collisional cross-sections from previous work, are consistent with the cryo-electron microscopy model for the run-on activated oligomer of SgrAI bound to DNA.  相似文献   

13.
We have determined the sequence of 2400 base pairs upstream from the human pseudo alpha globin (psi alpha) gene, and for comparison, 1100 base pairs of DNA within and upstream from the chimpanzee psi alpha gene. The region upstream from the promoter of the psi alpha gene shows no significant homology to the intergenic regions of the adult alpha 2 and alpha 1 globin genes. The chimpanzee gene has a coding defect in common with the human psi alpha gene, showing that the product of this gene, if any, was inactivated before the divergence of human and chimpanzee. However the chimpanzee gene contains a normal ATG initiation codon in contrast to the human gene which has GTG as the initiation codon. The psi alpha genes of both human and chimpanzee are flanked by the same Alu family member. The structure and position of this repeat have not been altered since the divergence of human and chimpanzee, and it is at least as well conserved as its immediate flanking sequence. Comparing human and chimpanzee, the 300 bp Alu repeat has accumulated only two base substitutions and one length mutation; the adjacent 300 bp flanking region has accumulated five base substitutions and twelve length mutations.  相似文献   

14.
We isolated 607 independent nalidixic acid-resistant mutants from Bacillus subtilis. A 163 by DNA segment from a 5′ portion of the gyrA gene was amplified from the DNA of each mutant strain. After heat denaturation, the product was subjected to gel electrophoresis to detect conformational polymorphism of single-strand DNA (PCR-SSCP analysis). Mobility patterns of the two DNA strands from all the mutant strains examined differed from those of the parental wild-type strains. The patterns were classified into 13 types, and the DNA sequence of each type was determined. A unique sequence alteration was found in mutants belonging to each of the 13 types, defining 13 gyrA alleles. Eight were single base pair substitutions, four were substitutions of two consecutive base pairs, and one was a substitution of three consecutive base pairs. Only three amino acid residues (Ser-84, Ala-85, and Glu-88) were altered in the deduced amino acid sequences of the mutated genes. We conclude that molecular typing based on the PCR-SSCP method is a powerful technique for the exhaustive identification of allelic variants among mutants selected for a phenotypic trait.  相似文献   

15.
B C Lin  M C Chien    S Y Lou 《Nucleic acids research》1980,8(24):6189-6198
A type II restriction endonuclease Xmn I with a novel site specificity has been isolated from Xanthomonas manihotis. Xmn I does not cleave SV40 DNA, but cleaves phi X174 DNA into three fragments, which constitute 76.61%, 18.08% and 5.31% of the total length of 5386 base pairs, and cleaves pBR322 DNA into two fragments of 55.71% and 44.29% of the entire 4362 base pairs. The nucleotide sequences around the cleavage sites made by Xmn I are not exactly homologous, but they have a common sequence of 5' GAANNNNTTC 3' according to a simple computer program analysis on nucleotide sequences of phi X174 DNA, pBR322 DNA and SV40 DNA. The results suggest that the cleavage site of Xmn I is located within its recognition sequence of 5' GAANNNNTTC 3'.  相似文献   

16.
The SfiI endonuclease cleaves DNA at the sequence GGCCNNNN NGGCC, where N is any base and downward arrow is the point of cleavage. Proteins that recognise discontinuous sequences in DNA can be affected by the unspecified sequence between the specified base pairs of the target site. To examine whether this applies to SFII, a series of DNA duplexes were made with identical sequences apart from discrete variations in the 5 bp spacer. The rates at which SFII cleaved each duplex were measured under steady-state conditions: the steady-state rates were determined by the DNA cleavage step in the reaction pathway. SFII cleaved some of these substrates at faster rates than other substrates. For example, the change in spacer sequence from AACAA to AAACA caused a 70-fold increase in reaction rate. In general, the extrapolated values for k(cat) and K(m) were both higher on substrates with inflexible spacers than those with flexible structures. The dinucleotide at the site of cleavage was largely immaterial. SFII activity is thus highly dependent on conformational variations in the spacer DNA.  相似文献   

17.
Mitochondrial DNA sequences of primates: Tempo and mode of evolution   总被引:99,自引:0,他引:99  
Summary We cloned and sequenced a segment of mitochondrial DNA from human, chimpanzee, gorilla, orangutan, and gibbon. This segment is 896 bp in length, contains the genes for three transfer RNAs and parts of two proteins, and is homologous in all 5 primates. The 5 sequences differ from one another by base substitutions at 283 positions and by a deletion of one base pair. The sequence differences range from 9 to 19% among species, in agreement with estimates from cleavage map comparisons, thus confirming that the rate of mtDNA evolution in primates is 5 to 10 times higher than in nuclear DNA. The most striking new finding to emerge from these comparisons is that transitions greatly outnumber transversions. Ninety-two percent of the differences among the most closely related species (human, chimpanzee, and gorilla) are transitions. For pairs of species with longer divergence times, the observed percentage of transitions falls until, in the case of comparisons between primates and non-primates, it reaches a value of 45. The time dependence is probably due to obliteration of the record of transitions by multiple substitutions at the same nucleotide site. This finding illustrates the importance of choosing closely related species for analysis of the evolutionary process. The remarkable bias toward transitions in mtDNA evolution necessitates the revision of equations that correct for multiple substitutions at the same site. With revised equations, we calculated the incidence of silent and replacement substitutions in the two protein-coding genes. The silent substitution rate is 4 to 6 times higher than the replacement rate, indicating strong functional constraints at replacement sites. Moreover, the silent rate for these two genes is about 10% per million years, a value 10 times higher than the silent rate for the nuclear genes studied so far. In addition, the mean substitution rate in the three mitochondrial tRNA genes is at least 100 times higher than in nuclear tRNA genes. Finally, genealogical analysis of the sequence differences supports the view that the human lineage branched off only slightly before the gorilla and chimpanzee lineages diverged and strengthens the hypothesis that humans are more related to gorillas and chimpanzees than is the orangutan.Abbreviations mtDNA mitochondrial DNA - bp base pair - URF unidentified reading frame  相似文献   

18.
Site and sequence specificity of the daunomycin-DNA interaction   总被引:8,自引:0,他引:8  
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.  相似文献   

19.
We have designed and synthesized a series of novel DNA photocleaving agents which break DNA with high sequence specificity. These compounds contain the non-diffusible photoactive p-nitrobenzoyl group covalently linked via a dimethylene (or tetramethylene) spacer to thiazole analogues of the DNA binding portion of the antibiotic bleomycin A2. By using a variety of 5' or 3' 32P-end labeled restriction fragments from plasmid pBR322 as substrate, we have shown that photoactive bithiazole compounds bind DNA at the consensus sequence 5'-AAAT-3' and induce DNA cleavage 3' of the site. Analysis of cleavage sites on the complementary DNA strand and inhibition of DNA breakage by distamycin A indicates these bithiazole derivatives bind and attack the minor groove of DNA. A photoactive unithiazole compound was less specific inducing DNA breakage at the degenerate site 5'-(A/T)(AA/TT)TPu(A/T)-3'. DNA sequence recognition of these derivatives appears to be determined by the thiazole moiety rather than the p-nitrobenzoyl group: use of a tetramethylene group in place of a dimethylene spacer shifted the position of DNA breakage by one base pair. Moreover, much less specific DNA photocleavage was observed for a compound in which p-nitrobenzoyl was linked to the intercalator acridine via a sequence-neutral hexamethylene spacer. The 5'-AAAT-3' specificity of photoactive bithiazole derivatives contrasts with that of bleomycin A2 which cleaves DNA most frequently at 5'-GPy-3' sequences. These results suggest that the cleavage specificity exhibited by bleomycin is not simply determined by its bithiazole/sulphonium terminus, and the contributions from other features, e.g. its metal-chelating domain, must be considered. The novel thiazole-based DNA cleavage agents described here should prove useful as reagents for probing DNA structure and for elucidating the molecular basis of DNA recognition by bleomycin and other ligands.  相似文献   

20.
Using a series of decadeoxyribonucleotides containing base analogues as substrates we measured the steady-state kinetic parameters for the reaction catalyzed by RsrI endonuclease and compared the results to those with its isoschizomer EcoRI. The kinetics of RsrI cleavage are affected by each substitution, with the effects being generally more deleterious than with EcoRI, as shown by the greater reduction in the specificity constant kcat/KM. The magnitudes of the effects of several substitutions are consistent with the formation of direct enzyme-nucleobase contacts at the indicated positions. With substrates containing 2-amino-purine or 2,6-diaminopurine at the central adenine or uracil at the outermost thymine in the recognition sequence, cleavage by RsrI was very slow, less than one-tenth the rate of the corresponding EcoRI-catalyzed reaction. The lower tolerance of RsrI endonuclease for functional group changes in its recognition site may reflect differences in the mechanisms of DNA recognition by the two enzymes. Although RsrI and EcoRI endonucleases bind with similar affinities to specific and nonspecific DNA sequences and appear to introduce similar structural distortions in DNA upon binding, the use of substrate analogues reveals significant differences at the level of catalysis in the mechanisms by which these two endonucleases recognize the duplex sequence GAATTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号