首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning.

Methodology and Principal Findings

DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized.

Conclusions

DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning.  相似文献   

3.
The lack of obvious morphological differences between species impedes the identification of species in many groups of organisms. Meanwhile, DNA-based approaches are increasingly used to survey biological diversity. In this study we show that sequencing the mitochondrial protein-coding gene NADH dehydrogenase, subunit 1 (nd1) from 534 bats of the Western Palaearctic region corroborates the promise of DNA barcodes in two major respects. First, species described with classical taxonomic tools can be genetically identified with only a few exceptions. Second, substantial sequence divergence suggests an unexpected high number of undiscovered species.  相似文献   

4.
We present a molecular phylogenetic analysis of 2808 aligned bp of rrnL, cox1, cob, H3 and 18S rRNA of all major morphological groups of Papuadytes diving beetles (Coleoptera: Dytiscidae) which are diverse in running water habitats throughout the Australian region. We focus on the origin of the fauna of the megadiverse islands of New Guinea and New Caledonia. Parsimony as well as Bayesian analyses suggest a basal position of Australian species in a paraphyletic series, with more recent nested radiations in New Caledonia and New Guinea. According to molecular clock analyses, both landmasses were colonized during the Miocene, which matches geological data and corroborates similar findings in other taxonomic groups. Our analyses suggest that dispersal played an important role in the formation of these large insular faunas, although successful colonization appears to be a rare event, and, in this case, is unidirectional. Whether or not a lineage is present on an island is due to chance: Papuadytes are absent from Fiji, where related Copelatus have radiated extensively in the same habitats occupied by Papuadytes in New Caledonia and New Guinea, while Copelatus are absent from New Caledonia. Lineages of Papuadytes apparently colonized New Caledonia twice, around 14 and 9 MYA according to the molecular calibration, and both lineages are derived from an Australian ancestor. The older clade is represented only by two apparently relictual mountain species (one morphologically strongly adapted to highly ephemeral habitats), while the younger clade contains at least 18 species exhibiting a great morphological diversity. The 150+ species in New Guinea are monophyletic, apparently derived from an Australian ancestor, and constitute a morphologically rather homogenous group. The tree backbone remains insufficiently supported under parsimony and Bayesian analyses, where shorter branches suggest a rapid sequence of major branching events.  相似文献   

5.
Success of species assignment using DNA barcodes has been shown to vary among plant lineages because of a wide range of different factors. In this study, we confirm the theoretical prediction that gene flow influences species assignment with simulations and a literature survey. We show that the genome experiencing the highest gene flow is, in the majority of the cases, the best suited for species delimitation. Our results clearly suggest that, for most angiosperm groups, plastid markers will not be the most appropriate for use as DNA barcodes. We therefore advocate shifting the focus from plastid to nuclear markers to achieve an overall higher success using DNA barcodes.  相似文献   

6.
Copelatinae is a diverse lineage of diving beetles (Dytiscidae) frequently encountered in wet tropical and subtropical forests, but phylogenetic relationships are very poorly understood. We performed a phylogenetic and biogeographic analysis of this worldwide distributed group based on 50 species including a representative sample of major taxonomic groups and biogeographical regions. DNA sequences were obtained for the mitochondrial genes cytochrome oxidase I, cytochrome b, and 16S rRNA, for a total of 1575 aligned nucleotide positions. We found Copelatinae to be monophyletic, placed in a derived position and not sister to all remaining dytiscids, as had been suggested by earlier authors. The largest genus, Copelatus with some 460 known species was paraphyletic with respect to the smaller genera Lacconectus and Aglymbus. Among the major lineages of Copelatus, the subgenus Papuadytes was consistently recovered as sister to all other species (including Lacconectus and Aglymbus) with the possible exception of two western Palearctic taxa. We propose that the subgenus Papuadytes is removed from Copelatus and assigned generic status. Likewise, the two western Palearctic Copelatus are removed from this genus, and assigned the available genus name Liopterus. Our best phylogenetic hypothesis retrieved Afrotropical and New Guinean plus Australian species of Copelatus as monophyletic. Asian species were paraphyletic with respect to a species from Sulawesi which grouped with the species from New Guinea. Asian species were also paraphyletic with respect to Oriental Lacconectus, which was grouped with a clade of Neotropical species. Neotropical Copelatus form at least two separate lineages. The biogeographical evolution of Papuadytes is consistent with the relative age of the landmasses in the Austral region. Basal species are Australian, and successively derived ones are from New Caledonia and New Guinea. One species apparently dispersed from New Caledonia to China. Assuming a molecular clock and using a standard calibration of 2% divergence/MY the origin of Copelatinae is estimated to be between 85 and 95 MY.  相似文献   

7.
DNA barcoding aims to develop an efficient tool for species identification based on short and standardized DNA sequences. In this study, the DNA barcode paradigm was tested among the genera of the tribe Sisyrinchieae (Iridoideae). Sisyrinchium, with more than 77% of the species richness in the tribe, is a taxonomically complex genus. A total of 185 samples belonging to 98 species of Sisyrinchium, Olsynium, Orthrosanthus and Solenomelus were tested using matK, trnHpsbA and internal transcribed spacer (ITS). Candidate DNA barcodes were analysed either as single markers or in combination. Detection of a barcoding gap, similarity‐based methods and tree‐based analyses were used to assess the discrimination efficiency of DNA barcodes. The levels of species identification obtained from plastid barcodes were low and ranged from 17.35% to 20.41% for matK and 5.11% to 7.14% for trnH‐psbA. The ITS provided better results with 30.61–38.78% of species identified. The analyses of the combined data sets did not result in a significant improvement in the discrimination rate. Among the tree‐based methods, the best taxonomic resolution was obtained with Bayesian inference, particularly when the three data sets were combined. The study illustrates the difficulties for DNA barcoding to identify species in evolutionary complex lineages. Plastid markers are not recommended for barcoding Sisyrinchium due to the low discrimination power observed. ITS gave better results and may be used as a starting point for species identification.  相似文献   

8.
High‐throughput DNA methods hold great promise for the study of taxonomically intractable mesofauna of the soil. Here, we assess species diversity and community structure in a phylogenetic framework, by sequencing total DNA from bulk specimen samples and assembly of mitochondrial genomes. The combination of mitochondrial metagenomics and DNA barcode sequencing of 1494 specimens in 69 soil samples from three geographic regions in southern Iberia revealed >300 species of soil Coleoptera (beetles) from a broad spectrum of phylogenetic lineages. A set of 214 mitochondrial sequences longer than 3000 bp was generated and used to estimate a well‐supported phylogenetic tree of the order Coleoptera. Shorter sequences, including cox1 barcodes, were placed on this mitogenomic tree. Raw Illumina reads were mapped against all available sequences to test for species present in local samples. This approach simultaneously established the species richness, phylogenetic composition and community turnover at species and phylogenetic levels. We find a strong signature of vertical structuring in soil fauna that shows high local community differentiation between deep soil and superficial horizons at phylogenetic levels. Within the two vertical layers, turnover among regions was primarily at the tip (species) level and was stronger in the deep soil than leaf litter communities, pointing to layer‐mediated drivers determining species diversification, spatial structure and evolutionary assembly of soil communities. This integrated phylogenetic framework opens the application of phylogenetic community ecology to the mesofauna of the soil, among the most diverse and least well‐understood ecosystems, and will propel both theoretical and applied soil science.  相似文献   

9.
We present the first comprehensive DNA barcoding study of German reptiles and amphibians representing likewise the first on the European herpetofauna. A total of 248 barcodes for all native species and subspecies in the country and a few additional taxa were obtained in the framework of the projects ‘Barcoding Fauna Bavarica’ (BFB) and ‘German Barcode of Life’ (GBOL). In contrast to many invertebrate groups, the success rate of the identification of mitochondrial lineages representing species via DNA barcode was almost 100% because no cases of Barcode Index Number (BIN) sharing were detected within German native reptiles and amphibians. However, as expected, a reliable identification of the hybridogenetic species complex in the frog genus Pelophylax was not possible. Deep conspecific lineages resulting in the identification of more than one BIN were found in Lissotriton vulgaris, Natrix natrix and the hybridogenetic Pelophylax complex. A high variety of lineages with different BINs was also found in the barcodes of wall lizards (Podarcis muralis), confirming the existence of many introduced lineages and the frequent occurrence of multiple introductions. Besides the reliable species identification of all life stages and even of tissue remains, our study highlights other potential applications of DNA barcoding concerning German amphibians and reptiles, such as the detection of allochthonous lineages, monitoring of gene flow and also noninvasive sampling via environmental DNA. DNA barcoding based on COI has now proven to be a reliable and efficient tool for studying most amphibians and reptiles as it is already for many other organism groups in zoology.  相似文献   

10.
The Pleistocene geological history of the Hawaiian Islands is becoming well understood. Numerous predictions about the influence of this history on the genetic diversity of Hawaiian organisms have been made, including the idea that changing sea levels would lead to the genetic differentiation of populations isolated on individual volcanoes during high sea stands. Here, we analyse DNA sequence data from two closely related, endemic Hawaiian damselfly species in order to test these predictions, and generate novel insights into the effects of Pleistocene glaciation and climate change on island organisms. Megalagrion xanthomelas and Megalagrion pacificum are currently restricted to five islands, including three islands of the Maui Nui super-island complex (Molokai, Lanai, and Maui) that were connected during periods of Pleistocene glaciation, and Hawaii island, which has never been subdivided. Maui Nui and Hawaii are effectively a controlled, natural experiment on the genetic effects of Pleistocene sea level change. We confirm well-defined morphological species boundaries using data from the nuclear EF-1alpha gene and show that the species are reciprocally monophyletic. We perform phylogeographic analyses of 663 base pairs (bp) of cytochrome oxidase subunit II (COII) gene sequence data from 157 individuals representing 25 populations. Our results point to the importance of Pleistocene land bridges and historical island habitat availability in maintaining inter-island gene flow. We also propose that repeated bottlenecks on Maui Nui caused by sea level change and restricted habitat availability are likely responsible for low genetic diversity there. An island analogue to northern genetic purity and southern diversity is proposed, whereby islands with little suitable habitat exhibit genetic purity while islands with more exhibit genetic diversity.  相似文献   

11.
Complete plastid genome (plastome) sequences and nuclear ribosomal DNA (nrDNA) regions have been proposed as candidates for the next generation of DNA barcodes for plant species discrimination. However, the efficacy of this approach still lacks comprehensive evaluation. We carried out a case study in the economically important but phylogenetically and taxonomically difficult genus Panax (Araliaceae). We generated a large data set of plastomes and nrDNA sequences from multiple accessions per species. Our data improved the phylogenetic resolution and levels of species discrimination in Panax, compared to any previous studies using standard DNA barcodes. This provides new insights into the speciation, lineage diversification and biogeography of the genus. However, both plastome and nrDNA failed to completely resolve the phylogenetic relationships in the Panax bipinnatifidus species complex, and only half of the species within it were recovered as monophyletic units. The results suggest that complete plastome and ribosomal DNA sequences can substantially increase species discriminatory power in plants, but they are not powerful enough to fully resolve phylogenetic relationships and discriminate all species, particularly in evolutionarily young and complex plant groups. To gain further resolving power for closely related species, the addition of substantial numbers of nuclear markers is likely to be required.  相似文献   

12.
Accurate specimen identification is challenging in groups with subtle or scarce taxonomically diagnostic characters, and the use of DNA barcodes can provide an effective means for consistent identification. Here, we investigate the utility of DNA barcode identification of species in a cosmopolitan genus of lichen‐forming fungi, Parmelia (Parmeliaceae). Two hundred and two internal transcribed spacer (ITS) sequences generated from specimens collected from all continents, including Antarctica, were analysed, and DNA barcodes of 14 species of Parmelia s.s. are reported. Almost all species show a barcode gap. Overall, intraspecific divergence values were lower than the threshold previously established for Parmeliaceae. However, the mean and range were elevated by deep barcode divergences in three species, indicating the likely occurrence of overlooked species‐level lineages. Here, we provide a DNA barcode reference library with well‐identified specimens sampled worldwide and sequences from most of the type material to enable easy and fast accurate sample identification and to assist in uncovering overlooked species in Parmelia s.s. Further, our results confirm the efficiency of the ITS region in the identification of species of Parmelia s.s. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 21–29.  相似文献   

13.
Despite increasing threats to the marine environment, only a fraction of the biodiversity of the oceans has been described, owing in part to the widespread occurrence of cryptic species. DNA-based barcoding through screening of an orthologous reference gene has been proposed as a powerful tool to uncover biological diversity in the face of dwindling taxonomic expertise and the limitations of traditional species identification. Although DNA barcoding should be particularly useful in the sea, given the prevalence of marine cryptic species, the link between taxa identified through DNA barcodes and reproductively isolated taxa (biological species) has rarely been explicitly tested. Here, we use an integrated framework comparing breeding compatibility, morphology and mitochondrial (cytochrome c oxidase 1) and nuclear (elongation factor-1-alpha) DNA sequence variation among globally distributed samples of the cosmopolitan marine bryozoan Celleporella hyalina (L.). Our results reveal that C. hyalina comprises numerous deep, mostly allopatric, genetic lineages that are reproductively isolated, yet share very similar morphology, indicating rampant cryptic speciation. The close correspondence between genetic lineages and reproductively isolated taxa in the context of minimal morphological change suggests that DNA barcoding will play a leading role in uncovering the hidden biodiversity of the oceans and that the sole use of morphologically based taxonomy would grossly underestimate the number of marine species.  相似文献   

14.
Multilocus phylogeography can uncover taxonomically unrecognized lineage diversity across complex biomes. The Australian monsoonal tropics include vast, ecologically intact savanna‐woodland plains interspersed with ancient sandstone uplands. Although recognized in general for its high species richness and endemism, the biodiversity of the region remains underexplored due to its remoteness. This is despite a high rate of ongoing species discovery, especially in wetter regions and for rock‐restricted taxa. To provide a baseline for ongoing comparative analyses, we tested for phylogeographic structure in an ecologically generalized and widespread taxon, the gecko Heteronotia binoei. We apply coalescent analyses to multilocus sequence data (mitochondrial DNA and eight nuclear DNA introns) from individuals sampled extensively and at fine scale across the region. The results demonstrate surprisingly deep and geographically nested lineage diversity. Several intra‐specific clades previously shown to be endemic to the region were themselves found to contain multiple, short‐range lineages. To infer landscapes with concentrations of unique phylogeographic diversity, we probabilistically estimate the ranges of lineages from point data and then, combining these estimates with the nDNA species tree, estimate phyloendemism across the region. Highest levels of phyloendemism occur in northern Top End, especially on islands, across the topographically complex Arnhem escarpment, and across the sandstone ranges of the western Gulf region. These results drive home that deep phylogeographic structure is prevalent in tropical low‐dispersal taxa, even ones that are ubiquitous across geography and habitats.  相似文献   

15.

Background

Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known “species”, as a reference to measure the natural diversity in three marine environments.

Methodology/Principal Findings

In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species.

Conclusions/Significance

COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of natural diversity in dinoflagellates. This highlights the extent to which we underestimate microbial diversity in the environment.  相似文献   

16.
A DNA barcode based on 650 bp of mitochondrial gene cytochrome c oxidase I is proving to be highly functional in species identification for various animal groups. However, DNA degradation complicates the recovery of a full‐length barcode from many museum specimens. Here we explore the use of shorter barcode sequences for identification of such specimens. We recovered short sequences — i.e. ~100 bp — with a single PCR pass from more than 90% of the specimens in assemblages of moth and wasp museum specimens from which full barcode recovery was only 50%, and the latter were usually less than 8 years old. Short barcodes were effective in identifying specimens, confirming their utility in circumstances where full barcodes are too expensive to obtain and the identification comparisons are within a confined taxonomic group.  相似文献   

17.
Sequence diversity in the cytochrome c oxidase subunit 1 gene has been shown to be an effective tool for species identification and discovery in various groups of animals, but has not been extensively tested in mammals. We address this gap by examining the performance of DNA barcodes in the discrimination of 87 species of bats from Guyana. Eighty‐one of these species showed both low intraspecific variation (mean = 0.60%), and clear sequence divergence from their congeners (mean = 7.80%), while the other six showed deeply divergent intraspecific lineages suggesting that they represent species complexes. Although further work is needed to examine patterns of sequence diversity at a broader geographical scale, the present study validates the effectiveness of barcoding for the identification of regional bat assemblages, even highly diverse tropical faunas.  相似文献   

18.
Traditional species-based conservation programmes are appropriate in situations where species are readily identifiable. However, in certain taxonomically complex groups of organisms, generally characterized by the presence of uniparental lineages and reticulate evolution, it is not possible to classify biodiversity into discrete and unambiguous species. Attempts to impose species-based conservation on such taxonomically complex groups are proving untenable, and threaten to divert scarce resources and taxonomic expertise from the conservation of other priority groups. We argue here that a new approach should be adopted for taxonomically complex groups. We advocate the conservation of evolutionary processes that generate taxonomic biodiversity, rather than the preservation of a limited number of poorly defined taxa arising from this evolution.  相似文献   

19.

Background

DNA barcoding enhances the prospects for species-level identifications globally using a standardized and authenticated DNA-based approach. Reference libraries comprising validated DNA barcodes (COI) constitute robust datasets for testing query sequences, providing considerable utility to identify marine fish and other organisms. Here we test the feasibility of using DNA barcoding to assign species to tissue samples from fish collected in the central Mediterranean Sea, a major contributor to the European marine ichthyofaunal diversity.

Methodology/Principal Findings

A dataset of 1278 DNA barcodes, representing 218 marine fish species, was used to test the utility of DNA barcodes to assign species from query sequences. We tested query sequences against 1) a reference library of ranked DNA barcodes from the neighbouring North East Atlantic, and 2) the public databases BOLD and GenBank. In the first case, a reference library comprising DNA barcodes with reliability grades for 146 fish species was used as diagnostic dataset to screen 486 query DNA sequences from fish specimens collected in the central basin of the Mediterranean Sea. Of all query sequences suitable for comparisons 98% were unambiguously confirmed through complete match with reference DNA barcodes. In the second case, it was possible to assign species to 83% (BOLD-IDS) and 72% (GenBank) of the sequences from the Mediterranean. Relatively high intraspecific genetic distances were found in 7 species (2.2%–18.74%), most of them of high commercial relevance, suggesting possible cryptic species.

Conclusion/Significance

We emphasize the discriminatory power of COI barcodes and their application to cases requiring species level resolution starting from query sequences. Results highlight the value of public reference libraries of reliability grade-annotated DNA barcodes, to identify species from different geographical origins. The ability to assign species with high precision from DNA samples of disparate quality and origin has major utility in several fields, from fisheries and conservation programs to control of fish products authenticity.  相似文献   

20.
DNA barcoding has been an effective tool for species identification in several animal groups. Here, we used DNA barcoding to discriminate between 47 morphologically distinct species of Brazilian sand flies. DNA barcodes correctly identified approximately 90% of the sampled taxa (42 morphologically distinct species) using clustering based on neighbor-joining distance, of which four species showed comparatively higher maximum values of divergence (range 4.23–19.04%), indicating cryptic diversity. The DNA barcodes also corroborated the resurrection of two species within the shannoni complex and provided an efficient tool to differentiate between morphologically indistinguishable females of closely related species. Taken together, our results validate the effectiveness of DNA barcoding for species identification and the discovery of cryptic diversity in sand flies from Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号