首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
RNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites. Remarkably, all sequences necessary for C addition are contained within ∼9 base pairs on either side of the insertion site. In addition, our data strongly suggest that sequences within this critical region affect different steps in the editing reaction. Template alterations upstream of an editing site influence nucleotide selection and/or insertion, while downstream changes affect editing site recognition and templated extension from the added, unpaired nucleotide. The data presented here provide the first evidence that individual regions of the DNA template play discrete mechanistic roles and represent a crucial initial step toward defining the source of the editing specificity in Physarum mitochondria. In addition, these findings have mechanistic implications regarding the potential involvement of the mitochondrial RNA polymerase in the editing reaction.  相似文献   

9.
10.
11.
The complete sequence of the mitochondrial DNA (mtDNA) of the true slime mold Physarun polycephalum has been determined. The mtDNA is a circular 62,862-bp molecule with an A+T content of 74.1%. A search with the program BLAST X identified the protein-coding regions. The mitochondrial genome of P. polycephalum was predicted to contain genes coding for 12 known proteins [for three cytochrome c oxidase subunits, apocytochrome b, two F1Fo-ATPase subunits, five NADH dehydrogenase (nad) subunits, and one ribosomal protein], two rRNA genes, and five tRNA genes. However, the predicted ORFs are not all in the same frame, because mitochondrial RNA in P. polycephalum undergoes RNA editing to produce functional RNAs. The nucleotide sequence of an nad7 cDNA showed that 51 nucleotides were inserted at 46 sites in the mRNA. No guide RNA-like sequences were observed in the mtDNA of P. polycephalum. Comparison with reported Physarum mtDNA sequences suggested that sites of RNA editing vary among strains. In the Physarum mtDNA, 20 ORFs of over 300 nucleotides were found and ORFs 14 19 are transcribed.  相似文献   

12.
RNA editing is a process whereby nucleotide insertion, deletion, or base substitution results in the production of an RNA whose sequence differs from that of its template. The mitochondrial RNAs of Physarum polycephalum are processed specifically at multiple sites by both mono- and dinucleotide insertions, as well as apparent cytidine (C) to uridine (U) changes. The precise mechanism and timing of these processing events are currently unknown. We describe here the development of an isolated mitochondrial system in which exogenously supplied nucleotides can be incorporated into RNAs under defined conditions. The results of S1 nuclease protection, nearest neighbor and RNase T1 fingerprint analyses indicate that the vast majority of these newly synthesized mitochondrial RNAs have been accurately and efficiently processed by both mono- and dinucleotide insertions. This work provides a direct demonstration of faithful nucleotide insertion in a mitochondrial editing system. In contrast, the newly synthesized RNAs are not processed by C to U changes in the isolated mitochondria, suggesting that the base changes observed in Physarum are unlikely to occur via a deletion/insertion mechanism.  相似文献   

13.
14.
15.
16.
Recombinant hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) was reported to possess terminal transferase (TNTase) activity, the ability to add nontemplated nucleotides to the 3' end of viral RNAs. However, this TNTase was later purported to be a cellular enzyme copurifying with the HCV RdRp. In this report, we present evidence that TNTase activity is an inherent function of HCV and bovine viral diarrhea virus RdRps highly purified from both prokaryotic and eukaryotic cells. A change of the highly conserved GDD catalytic motif in the HCV RdRp to GAA abolished both RNA synthesis and TNTase activity. Furthermore, the nucleotides added via this TNTase activity are strongly influenced by the sequence near the 3' terminus of the viral template RNA, perhaps accounting for the previous discrepant observations between RdRp preparations. Last, the RdRp TNTase activity was shown to restore the ability to direct initiation of RNA synthesis in vitro on an initiation-defective RNA substrate, thereby implicating this activity in maintaining the integrity of the viral genome termini.  相似文献   

17.
Terminal adenylation in the synthesis of RNA by Q beta replicase   总被引:10,自引:0,他引:10  
We investigated the apparent requirement that Q beta replicase must add a nontemplated adenosine to the 3' end of newly synthesized RNA strands. We used abbreviated MDV-1 (+)-RNA templates that lacked either 62 or 63 nucleotides at their 5' end in Q beta replicase reactions. The MDV-1 (-)-RNA strands synthesized from these abbreviated (+)-strand templates were released from the replication complex, yet they did not possess a nontemplated 3'-terminal adenosine. These results imply that, despite observations that all naturally occurring RNAs synthesized by Q beta replicase possess a nontemplated 3'-adenosine, the addition of an extra adenosine is not an obligate step for the release of completed strands. Since the abbreviated templates lacked a normal 5' end, it is probable that a particular sequence at the 5' end of the template is required for terminal adenylation to occur.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号