首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Chromosome Loops in Drosophila Melanogaster   总被引:7,自引:2,他引:5       下载免费PDF全文
S. Bonaccorsi  C. Pisano  F. Puoti    M. Gatti 《Genetics》1988,120(4):1015-1034
Primary spermatocyte nuclei of fixed testes of Drosophila melanogaster exhibit three large clusters of thread-like structures, each consisting of two long, continuous, loop-shaped filaments. No comparable intranuclear structures are observed in spermatogonia, secondary spermatocytes or spermatids. The threads begin to form in young spermatocytes, grow throughout spermatocyte development, reach their maximum size in mature spermatocytes and disintegrate prior to meiotic metaphase I. The presence of each cluster of threads depends upon the presence of a specific region of the Y chromosome; when this region is deleted the cluster is absent, and when it is duplicated the cluster is also duplicated. Together these observations strongly suggest that these structures represent giant Y chromosome lampbrush-like loops analogous to those described in Drosophila hydei. Two antibodies, one polyclonal and one monoclonal, differentially react with the three loops of D. melanogaster. Moreover, two of these loops are specifically stained by Giemsa at pH 10. By indirect immunofluorescence with these antibodies followed by Giemsa staining, each loop can be unambiguously identified and its presence and normality readily assessed. This enabled us to perform fine mapping experiments to determine the relationships between the Y chromosome fertility factors and the loops. The loop-forming sites map within the kl-5, kl-3 and ks-1 fertility factors. Regions h3 and h21 of the Y chromosome correspond to the loop-forming sites of kl-5 and ks-1, respectively. Each of these regions contains about 1300 kb of DNA and spans about one-third of its locus. The loop-forming site of the kl-3 locus is coextensive with region h7-h9 which contains about 4300 kb of DNA and corresponds to the minimum physical size of this locus. These data suggest that each loop is an integral part of a different fertility factor, representing the cytological manifestation of its activity in primary spermatocytes. The kl-2, kl-1 and ks-2 fertility regions do not produce any visible intranuclear structure and do not affect the kl-5, kl-3 and ks-1 loops. Thus, these loci may either not form loops at all or produce loop-like structures that we are unable to see because they are physically minute, destroyed by our fixation procedure, or both.  相似文献   

2.
Summary The function of pairs of translocated fragments of the Y chromosome of Drosophila hydei was tested. As the pairs of fragments together had a complete set of Y chromosomal sites, complementation of their function could be predicted according to results of earlier experiments. In contrast to the earlier experiments the development of lampbrush loops during the spermatocyte stage was blocked in one partner of each combined pair. As a consequence, no complementary effect on spermiogenesis is detectable. The results indicate that the formation of lampbrush loops by seven sites in the Y chromosome is a necessary prerequisite for the normal progress of spermiogenesis. This can be considered as further support of the view that the lampbrush loops in spermatocyte nuclei of Drosophila are phenotypic manifestations of the activity of male fertility factors.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

3.
Summary Deficiencies of the Y chromosome of Drosophila hydei including sites which develop lampbrush loops invariably cause sterility of males. Suppression of loop unfolding in one or more sites equally results in similar morphogenetic defects of spermiogenesis. A variegated type repression of lampbrush loop unfolding observed during the spermatocyte stage results in varying morphogenetic effects on spermiogenesis. This demonstrates the existence of causal relationships between the active phase of Y chromosomal factors in spermatocytes and the differentiation processes in spermatids.In some translocated Y fragments the mode of unfolding of a particular pair of lampbrush loops may be permanently changed. As a result, lampbrush loops of a mutant phenotype are developed. Some alterations of this type are correlated with functional alterations resulting in defective spermiogenesis.Three different fragments of the Y chromosome in which lampbrush loop formation was repressed have been tested for possible reversions of loop suppression by means of X irradiations. In none of the three cases reversion has been detected among two thousand tested chromosomes.To the memory of Karl-Heinz Bier.  相似文献   

4.
5.
A study of meiosis in an azoospermic man with a translocation between the Y and 14 chromosomes shows complete arrest of gametogenesis after the second division (spermatocyte II stage). At pachytene, the distal segment of the Y chromosome which is translocated onto the 14, is in contact with the sex vesicle.  相似文献   

6.
The protein content of spermatocyte nuclei from X/Y males and mutants of D. hydei which lack different Y chromosomal loop forming sites, was compared with that of X/0 males in 14C/3H double labelling experiments. Proteins of 45,000, 52,000, 54,000, 66,000, 80,000, 84,000, and 170,000 Dalton are found to be enriched in nuclei containing two or more active Y chromosomal loop forming sites. These proteins are also present in the nuclei of X0 males. In the complete absence of the Y-chromosomal loops proteins of 35,000, 46,000, 58,000 and 110,000 Dalton become enriched in the spermatocyte nuclei. — Analysis of the nuclear RNP of spermatocytes led to the isolation of an hnRNP-containing fraction with an S-value of >900S (RNP-PP). — In the RNP-PP of XY males labelled protein material associated with hnRNA is enriched by a factor of 3 in respect to the X0 genotype. The nuclear RNP has a heterogenous buoyant density in CsCl of p = 1.33 to 1.43 g/cm3. RNase T1 treatment of the crude nuclear RNP from XY males prior to sucrose gradient analysis shows that the 66,000 Dalton protein which is also strongly enriched in the nuclei in the presence of active Y chromosomal loop forming sites, is the main protein associated with protected RNA-sequences of 80–120 and 200–300 nucleotides in length. Competitive nitrocellulose filter binding assays reveal that the 66,000 Dalton protein predominantly forms in 2 M NaCl stable RNA/protein complexes with the poly A +hnRNA of the RNP-PP. These RNP complexes have a buoyant density of p = 1.43 g/cm3 in CsCl. The results are discussed in relation to the nuclear structure and the function of the Y chromosomal loops during spermatogenesis in Drosophila hydei.  相似文献   

7.
Chondrodysplasia punctata with X;Y translocation   总被引:6,自引:2,他引:4  
Summary We have studied a family in which the mother and her son were carriers of an X;Y translocation, der(X)t(X;Y) (p22.3;q11). The mother was of slightly short stature and had mildly short upper extremities. The son had epiphyseal punctate calcifications, mildly short extremities, a flattened nasal bridge, and mental retardation (chondrodysplasia punctata). The extra bands on the short arm of the X chromosome were identified as deriving from the long arm of the Y chromosome, using in situ hybridization with a Y-chromosome-specific DNA probe (pHY10). The chondrodysplasia punctata seen in our case may be associated with the abnormality of the distal short arm of the X chromosome caused by X;Y translocation.  相似文献   

8.
C. Pisano  S. Bonaccorsi    M. Gatti 《Genetics》1993,133(3):569-579
Primary spermatocyte nuclei of Drosophila melanogaster exhibit three giant lampbrush-like loops formed by the kl-5, kl-3 and ks-1 Y-chromosome fertility factors. These structures contain and abundantly transcribe highly repetitive, simple sequence DNAs and accumulate large amounts of non-Y-encoded proteins. By immunizing mice with the 53-kD fraction (enriched in β(2)-tubulin) excised from a sodium dodecyl sulfate-polyacrylamide gel loaded with Drosophila testis proteins we raised a polyclonal antibody, designated as T53-1, which decorates the kl-3 loop and the sperm flagellum. Two dimensional immunoblot analysis showed that the T53-1 antibody reacts with a single protein of about 53 kD, different from the tubulins and present both in X/Y and X/O males. Moreover, the antigen recognized by the T53-1 antibody proved to be testis-specific because it was detected in testes and seminal vesicles but not in other male tissues or in females. The characteristics of the protein recognized by the T53-1 antibody suggested that it might be a member of a class of axonemal proteins, the tektins, known to form Sarkosyl-urea insoluble filaments in the wall of flagellar microtubules. Purification of the Sarkosyl-urea insoluble fraction of D. melanogaster sperm revealed that it contains four polypeptides having molecular masses ranging from 51 to 57 kD. One of these polypeptides reacts strongly with the T53-1 antibody but none of them reacts with antitubulin antibodies. These results indicate that the kl-3 loop binds a non-Y encoded, testis-specific, tektin-like protein which is a constituent of the sperm flagellum. This finding supports the hypothesis that the Y loops fulfill a protein-binding function required for the proper assembly of the axoneme components.  相似文献   

9.
Chromosome analysis performed on a 30-year-old man revealed a 46,Y,der(X),t(X;Y)(qter-->p22::q11-->qter) karyotype, confirmed by fluorescence in situ hybridization (FISH). The man was of short stature, and no mental retardation was noticed; genitalia and testes were normal, as were the patient's FSH, LH, and testosterone blood levels. Sperm analysis showed azoospermia at the time of the first sampling and severe oligozoospermia, with 125,000 spermatozoa/milliliter, at the time of the second sampling. The sperm gonosomal complement of this patient and of a 46,XY donor were analyzed using multicolor FISH with X- and Y-chromosome probes. Our results clearly indicated that germinal cells carrying the translocation are able to complete the meiotic process by producing spermatozoa compatible with normal embryonic development, with more than 80% of the spermatozoa having either a Y chromosome or a der(X); however, a high level of spermatozoa with gonosomal disomies was observed. We also found a significant increase in the frequency of autosomal disomies in the carrier, which would suggest an interchromosomal effect. All previously reported cases in adult males were associated with azoospermia; testicular histological studies, performed in patients carrying the same X;Y translocation, showed spermatogenetic arrest after pachytene. To our knowledge, this is the first molecular analysis of the gonosomal complement in spermatozoa of men with a t(X;Y)(qter-->p22::q11-->qter).  相似文献   

10.
The nuclei of growing spermatocytes in Drosophila hydei and D. neohydei are characterized by the appearance of phase-specific, paired, loop-shaped structures thought to be similar to the loops in lampbrush chromosomes of amphibian oocytes. In X/O-males of D. hydei spermatogenesis is completely blocked before the first maturation division. No spermatozoa are formed in such testes. In the nuclei of X/O-spermatocytes, paired loop formations are absent. This shows the dependence of these chromosomal functional structures upon the Y chromosome. The basis of this dependence could be shown through an investigation of males with two Y chromosomes. All loop pairs are present in duplicate in XYY males. This proves that the intranuclear formations are structural modifications of the Y chromosome itself. These functional structures are species-specific and characteristically different in Drosophila hydei and D. neohydei. Reciprocal species crosses and a backcross showed that the spermatocyte nuclei of all hybrid males possess the functional structures corresponding to the species which donated the Y chromosome. This shows that the morphological character of the functional structures is also determined by the Y chromosome.  相似文献   

11.
E Lifschytz  D Hareven  A Azriel  H Brodsly 《Cell》1983,32(1):191-199
Drosophila hydei clones representing transcribed middle-repetitive sequences from four of six major lampbrush loops of the Y chromosome were isolated. Sequences homologous to each clone are clustered in a particular locus on the Y chromosome, but additional euchromatic sites were found for one of the transcribed clones. In situ hybridization to lampbrush-loops RNA permitted the identification of clones homologous with the two "nooses" loops on YS and with the "clubs" and "tubular ribbons" on the YL arm. Loop-specific nuclear RNA molecules range in size from 10S to 60S. Loop RNA is accumulated in the nucleus and remains attached to the loops during the course of primary spermatocyte growth. It disappears, however, along with the loop structures, during the first meiotic prophase. The structure and function of the Y chromosome and its lampbrush loops are briefly considered in the light of these findings.  相似文献   

12.
Spermatogenesis in XO,Sxr mice: role of the Y chromosome   总被引:2,自引:0,他引:2  
The goal of this investigation was to evaluate the role of the Y chromosome in spermatogenesis by a quantitative and qualitative analysis of spermatogenesis as it occurs in the absence of a significant portion of the Y chromosome, i.e., in XO,Sxr male mice. Although these mice have the testis-determining portion of the Y chromosome on their single X chromosome, they lack most of the Y chromosome. Since it was found that all sperm-specific structures were assembled in a normal spatial and temporal pattern in spermatids of XO,Sxr mice, the genes controlling these structures cannot be located on the Y chromosome outside of the Sxr region, and are more likely to be on autosomes or on the X chromosome. In spite of the assembly of the correct sperm-specific structures, spermatogenesis was not quantitatively normal in XO,Sxr mice and significantly reduced numbers of spermatids were found in the seminiferous tubules of these mice. Furthermore, two size classes of spermatids were found in the testes of XO,Sxr mice, normal and twice-normal size. These findings are suggestive of abnormalities of meiosis in XO,Sxr spermatocytes, which lack one of the two sex chromosomes, and may not implicate function of specific genes on the Y chromosome. Morphological abnormalities of spermatids, which were not unique to XO,Sxr mice, were observed and these may be due to either a defective testicular environment because of reduced numbers of germ cells or to the lack of critical Y chromosome-encoded products. Since pachytene spermatocytes of XO,Sxr mice exhibited a sex vesicle, it can be concluded that the assembly of this structure does not depend on the presence of either a complete Y chromosome or the pairing partner for the X chromosome.  相似文献   

13.
In the red howler monkey, Alouatta seniculus stramineus (2n = 47, 48, or 49), variations in diploid chromosome number are due to different numbers of microchromosomes. Males exhibit a Y;autosome translocation involving the short arm of an individual biarmed autosome. Consequently, the sex-chromosome constitution in the male is X1X2Y1Y2, with X1 representing the original X chromosome, X2 the biarmed autosome (No. 7), Y1 the Y;7p translocation product, and Y2 the acrocentric homolog of 7q. In the first meiotic division, a quadrivalent with a chain configuration can be observed in spermatocytes. Females have an X1X1X2X2 sex-chromosome constitution. Chromosome heteromorphisms were observed in pair 13, due to a pericentric inversion, and pair 19, due to the presence of constitutive heterochromatin. Microchromosomes, which varied in number between individuals, were also heterochromatic. NOR-staining was observed at two separate sites on a single chromosome pair (No. 10). A comparison of A.s. stramineus with A.s. macconnelli shows that these two subspecies have identical diploid chromosome numbers (47, 48, or 49), again due to a varying number of microchromosomes, and that they share a similar sex-chromosome constitution. Their karyotypes, however, are not identical, but can be derived from each other by a reciprocal translocation. Further comparisons with other A. seniculus subspecies reported in the literature indicate that this taxon is not karyologically uniform and that substantial chromosome shuffling has occurred between populations that have been considered to be subspecies by taxonomic criteria based on their morphometric attributes.  相似文献   

14.
We microdissected a Y chromosomal lampbrush loop pair from primary spermatocyte nuclei of Drosophila hydei and cloned the DNA directly at the microscale. Four of the 12 recombinant DNA clones recovered display in situ hybridization to mitotic metaphase Y chromosomes, preferentially in the chromosomal region identified as the origin of the lampbrush loop pair. All clones, however, also hybridize to autosomal and X chromosomal loci in polytene chromosomes. Y chromosomal DNA sequences of D. hydei again prove to be members of different families of repeated sequences distributed throughout the genome. These microcloning experiments, which were carried out under very unfavourable experimental conditions (low DNA content of the lampbrush loops in the presence of large amounts of RNA) prove that almost any chromosomal structure detected by light microscopy is directly accessible to molecular cloning experiments by micromethods.  相似文献   

15.
We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family.  相似文献   

16.
In the common housefly, the presence or absence of a male-determining factor, M, is responsible for sex determination. In different strains, M has been found on the Y, on the X, or on any of the five autosomes. By analyzing a Y-autosomal translocation and a ring-shaped, truncated Y chromosome, we could show that M on the Y consists of at least two regions with M activity: One of them can be assigned to the short arm of the Y chromosome (MYS), which is largely C-banding negative, the other region lies on the C-banding positive long arm of the Y, including the centromeric part (MYL). Each region alone behaves as a hypomorphic M factor, causing many carriers to develop as intersexes of the mosaic type instead of as males. When introduced into the female germ line by transplantation of progenitor germ cells (pole cells), the MYS shows an almost complete maternal effect that predetermines 96% of the genotypic female (NoM) animals to develop as males. In contrast, the MYL has largely lost its maternal effect, and most of the NoM animals develop as females. Increasing the amount of product made by either of the two hypomorphic M factors (by combining the MYS and MYL or two MYS) leads to complete male development in almost every case. We thus assume that the Y chromosome carries at least two copies of M, and that these are functionally equivalent.  相似文献   

17.
The loci for steroid sulfatase (STS), the deficiency of which causes X-linked ichthyosis, the cell surface antigen 12E7 (MIC2X), and the blood group antigen Xg (Xg) have been mapped to Xp22.3. These loci are of particular interest since they do not appear to undergo X-chromosome inactivation. In an attempt to establish the relative order of STS and MIC2X, fibroblasts from carriers of four different X/Y translocations and an X/10 translocation were obtained and fused with mouse cell lines deficient in hypoxanthine phosphoribosyltransferase. The breakpoints on the X chromosome in these five translocations are in Xp22. Several independent clones from each fusion were isolated in HAT medium. The clones were examined cytogenetically, and in each case at least two independent clones were identified that have an active X/Y or X/10 translocation chromosome in the absence of other X or Y material. These clones were then tested for STS and 12E7 expression. In two of the X/Y translocations, the markers, STS and 12E7, were both absent. In the X/10 and a third X/Y translocation, both markers were retained. In each of three clones containing the fourth X/Y translocation, STS activity was retained but 12E7 antigenicity was lost. Assuming that this is a simple translocation and does not represent a more complex rearrangement, these results suggest that MIC2X is distal to STS.  相似文献   

18.
Summary Cytogenetic analysis of 78 spermatozoa from a man heterozygous for a t(13;14) Robertsonian translocation was performed. R banding was applied for chromosomal identification. Incidence of normal and balanced complements were respectively 50% and 41.3%. Six unbalanced complements (7.7%) were observed, resulting from adjacent segregation. Although alternate segregation is the most common mode of distribution, the possibility of producing unbalanced zygotes exists. The frequency of abnormalities unrelated to the translocation was 16.5% including 12.8% hypohaploïdy, 2.5% hyperhaploidy, and 1.2% of structural aberrations. An excess of t(13;14) X complements was observed (24 with X versus 14 with Y). This may result from the close association between trivalent (13;14) and X chromosome observed in the pachytene spermatocyte nucleus.  相似文献   

19.
Orilio Leoncini 《Chromosoma》1977,63(4):329-357
Mutations were induced in the Y chromosomal fertility genes of Drosophila hydei by EMS treatment of adult males. Four types of mutants were observed: 1. Sterile mutants without detectable cytological changes in Y chromosomal lampbrush loops. 2. Sterile males with morphologically changed loops. 3. Sterile males where one or several Y chromosomal loops are missing in the spermatocytes. 4. Mutants which are temperature-sensitive for sterility, development of loops or altered loop morphology. In this paper four Y mutants are described which are temperature-sensitive as regards fertility but which show unchanged lampbrush loops. They can be mapped in four different complementation groups. Two of those occur probably in regions of the Y chromosome without cytologically detectable lampbrush loops. All mutations are found in the distal half of the long arm. The temperature-sensitive period occurs during the primary spermatocyte stage and in early spermatid development while the manifestation of the effect occurs postmeiotically. The mutants are further characterized with respect to changes in the ultrastructure of the sperm at the restrictive temperature.  相似文献   

20.
Summary The phenotype of the variegation position effect white-mottled-2 in Drosophila hydei is modified by supernumerary Y chromosomes and by fractions thereof. Different translocated Y fragments have varying degrees of effectiveness in suppressing the mutant phenotype in the mottled eyes. In fragments derived from similar regions of the Y chromosome the suppressive ability is related to their cytological lengths. In contrast, fragments derived from distinctive regions of the Y chromosome differ markedly in their effectiveness, and these differences are not necessarily correlated with the cytological length. In particular, fragments of the distal region of YL are more effective in enhancing the wild phenotype than are proximal fragments of similar size.The mutation white-mottled-2 is accompanied by a complex rearrangement of the X chromosome. This inhibits crossing over between large regions of the X chromosome in structural heterozygotes; it causes also a delay of development and a considerable reduction of viability in homozygous females and hemizygous males. XO males are inviable. The inviability of these males is partially covered by Y fragments. With respect to viability, the fragments show similar regional differences in effectiveness as in the modification of the mottled phenotype.There is also a parental effect on the modulation of the white-mottled-2 phenotype.There is no correlation between the activity of Y chromosomal factors on spermiogenesis and the activity of Y factors on the modification of the variegation position effect. Suppression of Y chromosomal sites which normally unfold lampbrush loops during the spermatocyte stage and whose activity has previously been shown to be indispensible for normal differentiation of the male germ line cells does not result in any visible alterations of the effectiveness on the mottling. So there is obviously independence between these two different genetic activities of Y chromosomal factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号